ME3351
Enginearing Mechanics
Whir 1
Statics of Particles
Basics and Vontars
Mechanics
The brain $\%$ physical scianco that duals week the stake o
vase or stake $\%$ motion under the action of stereos, is lamed as Mechanics
Mechanics cion bo liviclod into 1. Statics 2. Dynamics Statics ixpromics:

Statics analyses the forces on particles or rigid bodies Which are at vest, Dynamics deals with bodies which are in notion Dyramies can be derided in to: 1-kinematics 2-Lineties

Kinematics is the study of the relationship between displacement, velocity and acceleration without conziacring the forces which cause the motion.
V ir Kinetics is the study 8 motion of the bodies with consideration of forces involved on it.
Baric Concopts:
Space is usod to represent the position or a poirt-in relation to reference point called Ongir.
Time is uses to otorine the event.
Mass: is used to characterise ans compare the bodies. It is used to measure resistance to Change the state q rest or motion celled Inertia.
force: is the effort required to change or tends to change the State of rest or uniform motion $\%$ a body.

Iirnonsirncil onnejris is usoful.
I. to connive crime orpiousions
\& bo ties the limenswors of unknown variablo.
Sign Convention

1. tva fore

2. ra
3. () romance is absuricat to ko - $\sqrt{2}, 4$ momare thrive

Lass \% Mechanics
1: Nuraris I dow
Everyburly continuous in its \&tate $\%$ rest or of uniform motion, unless an external force aces on it.
D. Newton's II Low

The rate $\%$ Change of momentum ($M_{2} T^{-1}$) of a becky is. directs proportional to the resultant force acting on it, and lakes place in the direction of that force. $\sum F=m a$
3. Nautor's III Law

For ency action, there will be an equal and opposite reacivio 4. Newton's law of gravitation

Tub particles if mass ' m ' and m_{2} ' are attracted towards each other along the line connecting them with a force, whose magnitude is directly proportional to the produce of their masses ane inversely proportional to the Square of the distance between them.

$$
F=\frac{G m_{1} m_{2}}{R^{2}}
$$

Where, $G=$ Universal Constant of gravitation

$$
=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}
$$

and $R=$ the distance between the fartides.
5. Parallelogram law

This law states that, when two forces represent the twe Sides q a parallelogram, then the diagonal will be"vesultana
6. Principle \% transmissibility.

The affect of a force will not be changed, if the point of application is shifted anywhere along the line of action.
T. Lamis theorem

Lamis theorem States that, if three forces acting on a particle, keep it in equilibrium, then each force is Proportional to the sine of the angle between the other twa forces and the constant of proportionality is the same.

Mathematically, from fig 1.1 (a)

$$
\frac{F_{1}}{\sin \alpha}=\frac{F_{2}}{\sin \beta}=\frac{F_{3}}{\sin \gamma}
$$

8. Laws of Triangle:
(i) Sine law:

If a, b, c are the sides of a triangle as shown in is and α, β, γ be the angle between the sides then the sine law states that, $\frac{a}{\sin \alpha}=\frac{b}{\sin \beta}=\frac{c}{\sin \gamma}$
(ii) Cosine law: If two sides and the angle between the side are known, then the third side is given by

$$
a^{2}=b^{2}+c^{2}-2 b c \cos \theta
$$

In a right angle triangle, $\sin \theta=\frac{\text { Opposite side }}{\text { Hypotenuse }}$

$$
\cos \theta=\frac{\text { Adjacent Side }}{\text { Hypotenuse }}
$$

(iii) The fythagorous theorem says,
$a^{2}=b^{2}+c^{2}$
[fig. b]
(iv) Law on similar triangles $\frac{H}{2}=\frac{h}{b} \quad$ [fir. c]

$f_{g} \cdot(b)$
9. Law of Parallelogram

If a \& b are the two sides of a parallelogram, then the oliggonal will be given by,

$$
d^{2}=a^{2}+b^{2}+2 a b \cos \theta
$$

Where, θ is the angle between the two sides as Shown is fig.

Scalars and vectors:
Scalars. A quantity is said to be Scalar, if it is completely defined by its magnitude alone.
Vectors: A quantity is saidoobe vector, if it is completely defiral by its magnitude \& direction Eg. Force, velocity, acceleration, momentum \& Weight.

Vector Operations:

1. Addition of Vectors

$$
\begin{aligned}
& \bar{A}=a_{1} i+b_{1} j+c_{1} k ; \bar{B}=a_{2} i+b_{2 j}+c_{2} k \text { then } \\
& A \bar{C}=\left(a_{1}+a_{2}\right) i+\left(b_{1}+b_{2}\right) j+\left(c_{1}+c_{2}\right) k
\end{aligned}
$$

2. Subtraction if vectors

$$
\begin{aligned}
& \quad \bar{A}=a_{1} i+b_{1} j+c_{1} k ; \bar{B}=a_{2} i+b_{2} j+c_{2} k \\
& \bar{C}=\left(a_{1}-a_{2}\right) i+\left(b_{1}-b_{2}\right) j+\left(c_{1}-c_{2}\right) k
\end{aligned}
$$

3. Dot product $\%$ vectors:

The dot product? two vectors $\bar{A} \& \bar{B}$ is given by

$$
\bar{A} \cdot \bar{B}=A B \cos \theta
$$

Where, θ ' is the angle beaveen the two vectors. Bet product is also cooled as 'Scalar product of vectors'.

Statics \% Articles
Particle is defined as an object that has no size \& shape bue that has mass.
Force
Fore is an effort required to change the state of rest or of uniform motion of a body. This force can push, pull \& twist $\%$ a body. Characteristics of a force
i) Magnitude. $\%$ force (F)
ii) Point of application
iii) Line of action
iv) Sense of force [Pull or Push] figs. Representation of force

Types of force System:

1. Coplanar force System.

If all the line. of action of forces are lying on a single plane, then these
 force system is called. Coplanar force: es. $2 D$ force system.
2. Non-Coplancu force system or Space force system: It the lines of action of all forces are not lying on a single plane on 3 Dimentional forces are called ,\rightarrow Space force system. es. Tripoid. Transmission laver etc.

Equilibrium of a Particle
A particle is in equilibrium, provided it is at rest or it has a constant velocity.

Te solve the problem for unknowns, we must draw the free body diagram of the situation.

Free body Diagram (FBD):
It is a diagram which Shows all the forces which ace on the particle which is being isolated or free from surrounding. To draw the froe body diagram, the follow forces must be taken into account.

1. Self weight of the body (W)
2. Applied forces (P)
3. Reaction or Normal forces (R or N)
4. Frictional force (f).
5. Spring force [Es]
6. Cable tension (T)

Nuncerira) Probbome
 roter sajbern dharbarts

$$
P=\sqrt{F^{2}+F_{2}+2 F F_{2} \cos 0}
$$

$$
P=12 N .52
$$

$$
F=\cos ^{-i}\left[\begin{array}{l}
\cdot F_{3} \sin 0 \\
F_{1}+F_{2} \cos \sigma
\end{array}\right]
$$

$$
6=17.04^{\circ}
$$

(ii) Sisurming of comporciss.

Smutarionsies os a buty vie
 bussef, bovas 云 the cpforize verden roproseste tyeic rasidesin
2. Two wives attedred t o bote in a foundetion as

$$
\begin{aligned}
& \text { Cn lie } \\
& \sum F_{x}=360000525^{\circ}-6650 \cos 15^{\circ} \\
& \sum F_{x}=-3160.6987 \mathrm{~N} \\
& \sum F_{y}=360050525^{\circ}+665050515^{\circ} \\
& \Sigma F_{1}=3042.572 \mathrm{~N}
\end{aligned}
$$

on lis kourdaxion.

$$
\begin{aligned}
& \sum F_{x}=F_{1}+F_{2} \cos \theta=115050, \sum F_{5} ?
\end{aligned}
$$

$$
\begin{aligned}
& R=\overline{\angle F_{1}^{2}+\Sigma \bar{L}_{y}^{2}}=1206.52 B^{\prime \prime}
\end{aligned}
$$

$$
\begin{aligned}
& P^{2}=F^{2}+F_{2}^{2}-3 F_{1} F_{2} \cos (=0-E)
\end{aligned}
$$

$$
\begin{aligned}
& \square \overline{\sigma^{2}-F^{2}}=\overline{L E}
\end{aligned}
$$

$$
R=\sqrt{\Sigma F_{x}^{2}+\Sigma F_{y}^{2}}=4528.167 \mathrm{~N} ; \quad \theta=\tan ^{-1}\left[\frac{\Sigma F_{y}}{\left\langle F_{x}\right.}\right]=45.73^{\circ} .
$$

3. Three wires oxere the tensions indicated on the ring as shourn in firs. Assuming as concurrent System, determine the force in a single wire to replace the three wires.

$$
\begin{aligned}
& \sum F_{x}=60+20 \cos 60=70 \mathrm{~N} \\
& \sum F_{y}=-40+20 \sin 60=-22 \cdot 68 \mathrm{~N} \\
& R=\sqrt{\sum F^{2}+25_{y}^{2}} \\
& R=\sqrt{70^{2}+(-22 \cdot 65)^{2}}=73-582 \mathrm{~N}
\end{aligned}
$$

$\theta-\sum f_{4}$

$$
\begin{aligned}
& \theta=\tan ^{-1}\left[\frac{\sum F_{y}}{\sum F_{x}}\right]=\tan ^{-1}\left[\frac{22 \cdot 68}{\frac{20}{7}}\right] \\
& \theta=17.952^{\circ} \\
& \sum F_{y}=22.6
\end{aligned}
$$

4. Determine the angle bat two equal forces F, when their resultant is,
i) $R=F$;
(ii) $R=F / 2$

Son:-
from the low of $H \log r a n$ the resultant ε two forces is g_{0}

$$
\text { i) } \begin{aligned}
R^{2} & =F_{1}^{2}+F_{2}^{2}+2 F_{1} F_{2} \cos \theta \\
F^{2} & =F^{2}+F^{2}+2 F^{2} \cos \theta \\
F^{2} & =F^{2}(2+2 \cos \theta) \\
1 & =2(1+\cos \theta) \\
1+\cos \theta & =1 / 2 \\
\cos \theta & =-1 / 2 \\
\theta & =120^{\circ}
\end{aligned}
$$

ii)

$$
\begin{aligned}
\frac{F^{2}}{4} & =F^{2}+F^{2}+2 F^{2} \cos \theta \\
F^{2} / 4 & =F^{2}(2+2 \cos \theta) \\
\frac{1}{4} & =2(1+\cos \theta) \\
1+\cos \theta & =\frac{1}{8} \\
\cos \theta & =\frac{1}{8}-1 \\
\cos \theta & =\frac{-7}{8} \\
\theta & =151.0^{\circ}
\end{aligned}
$$

ii) 26 N loworide bionth
iii) 30 N tommeile. Sumt wois

\approx

$$
\begin{aligned}
& \theta=\tan ^{-1}\left[\frac{33.72}{30.69}\right] \\
& \theta=47.693^{\circ}
\end{aligned}
$$

$$
R=\sqrt{\sum F_{x}^{2}+\sum F_{y}^{2}}=45.595 \mathrm{~N}
$$

10. A system of 4 forces acting on a body as shown of is Determine the resultant force and its direction.

$$
\begin{aligned}
& \theta_{1}=\tan ^{-1}\left[\frac{1}{2}\right]=26.5651^{\circ} \\
& \theta_{2}=\tan ^{-1}\left[\frac{4}{3}\right]=53.1301^{\circ} \\
& \theta_{3}=60^{\circ}, \theta_{4}=50^{\circ} .
\end{aligned}
$$

$$
\begin{gathered}
R=\sqrt{\sum r_{x}^{2}+\frac{8}{2} f_{y}^{2}}=160-32 \mathrm{~N} \\
\theta=\tan ^{-1}\left[\frac{65.5369}{146.3128}\right] \\
\theta=24.1287^{\circ}
\end{gathered}
$$

Lquilitrant (I)

6. An wionow force L kap the fow coplonae concumane faces in sequlitricem. Find the force.

$$
\begin{aligned}
& S_{i_{x}}=18+20 \cos 2.5-12 \cos 30=21.748 k \mathrm{~N} \\
& \text { Ify }=35+20 \sin 45-\sin 2 \sin 30=43 \cdot 14 \mathrm{kN} \\
& R=\sqrt{2 R_{x}^{2}+\Sigma 1 y^{2}}=4 \delta \cdot 3118 \mathrm{kN} \\
& O=63-246^{\circ}
\end{aligned}
$$

Iquilibrant is a force having same magnetwde as that of the resultant and appying in the opp dierection to koep the particle an equitibrium.
$I=48.3118 \mathrm{kN}$ acius at an angle $80.63 .246^{\circ}$ with plegative x-bis

Equilibrime of Parcicla Subjoctod to coplanar formosa [OD]
Particle is subjected to two forces
Whine a particle is is subjocead to two forces mos it the panicle as is equilitomiom, then ko two forces will have Same magnitude, the Same line of achoo but wite anpesito sense as thoron in fig. (a).

2. 1 particle is subjected to throe forces:

When a particle 'A' is subjected to throe forces. and the particle is in equilibrium, it must satisfy the Lamis theorem (Which States that each force is Proportional to the sine of the angle between the other two forces) and they must be concurrent.

$$
\frac{F_{1}}{\sin \alpha}=\frac{F_{2}}{\sin \beta}=\frac{F_{3}}{\sin \gamma}
$$

3. Equibruim of a particle, Subjected to several forces

When a particle is subjected to several forces, the force must be respired into horizaral \& Vertical component

Fer equilibrium the resultant force $R=0$.
$\therefore \Sigma F_{x}=0 \ldots$ sum of the horizontal forces $=0$
$\sum F_{y}=0 \ldots$ sum of the vertical force $=0$
(1) A mass $q 45 \mathrm{~kg}$ is suspended by a rope from a ceiling The mass is pulled of a horizontal force until the rope mes at an angle of 70° with the ceiling. Fins the horizontal force and the tension in the rope.
using lames Theorem,

$$
\begin{aligned}
& \frac{F}{\sin 160^{\circ}}=\frac{(45 \times 9.81) \mathrm{N}}{\sin 110^{\circ}}=\frac{T}{\sin 90^{\circ}} \\
& F=160.674 \mathrm{~N} ; \quad T=469.78 \mathrm{~N} .
\end{aligned}
$$

(2) A cord supported ar $A \& B$ carries a load $\% 20 \mathrm{~N}$ at D and a load of w at C as shown. Find the value of w So that $C D$ remains horizontal.

$$
\text { be Ir. . In In at bal } 1 \mathrm{~N}
$$

W

$$
F_{1} \sin c_{0}+30 \sin 30=r_{2} \sin 25
$$

$$
r_{1} \sin 60-r_{2} \sin 25=-30 \sin 30
$$

$$
0.8661,0.422615=-15
$$

$$
F_{1}-0.488 F_{2}=-17.321
$$

$$
\begin{equation*}
r_{1}=-21.96152+1.8126 \mathrm{~F}_{2} \tag{1}
\end{equation*}
$$

$$
r_{1}=-17.321+0.488 f_{2}
$$

(T) - (J) $\ggg=\frac{346405}{3}+2 \cdot 3006 \mathrm{~F}_{2}$

$$
\begin{aligned}
244040 & =6597 \\
F_{2} & =15.057 \mathrm{NN}
\end{aligned}
$$

$$
F_{1}=-9.97 \mathrm{kN}
$$

$$
F_{1}=9.97 \mathrm{kN}
$$

for particle A chins subjoceod lo forces go to bo (n) cyulibrum,

Sole

$\sum F_{y}=0$,

$$
F+275 \sin 15+225 \sin 60=350 \sin \theta
$$

$$
F=48.68 \mathrm{~N}
$$

9 A smooth Circular cylinder of radius 1.5 m is kept in a triangular groove, one side of which makes 45° and the the at 30° with horizontal. Find the reactions at the surface of contact, if there is no friction and the cylinder essight is 100 kg .

Applying Lami's theorem.

$$
\begin{aligned}
& \frac{981}{\sin 75^{\circ}}=\frac{R_{1}}{\sin 135^{\circ}}=\frac{R_{2}}{\sin 150^{\circ}} \\
& R_{1}=718.14 \mathrm{~N}, \quad R_{2}=507.8029 \mathrm{~N}
\end{aligned}
$$

11) Two smooth sphere each of radius 100 mm and weight 100 N rest in a box having vertical sises. the distance between the sides being 360 mm . Find the reactions ot the point of contacts A, B, C and D as shown in fig.

Let A, B, C \& D are the ports if contacts.

From schematic sketch,

$$
\begin{aligned}
\cos \theta & =\frac{160}{200} \\
\theta & =36.87^{\circ}
\end{aligned}
$$

Consider Sphere I:

$$
\begin{aligned}
\sum F_{x}=0 \Rightarrow R_{A} & =R_{B} \cos 36.87 \\
\sum F_{y}=0 \Rightarrow 100 & =R_{B} \sin 36.87^{\circ} \\
R_{B} & =166.6662 \mathrm{~N} \\
R_{A} & =133.3328 \mathrm{~N}
\end{aligned}
$$

Consider sphere II:

$$
\begin{aligned}
& \Sigma F_{x}=0 \Rightarrow \begin{array}{l}
R_{C}=R_{B} \cos 36.87^{\circ} \\
R_{C}=133.33 \mathrm{~N} \\
\Sigma F_{y}=0 \Rightarrow
\end{array} \begin{array}{l}
R_{D}=R_{B} \sin 36.87^{\circ}+100 \\
R_{D}=200 \mathrm{~N}
\end{array}
\end{aligned}
$$

Resolution of Concurnone fores in space (ss)
Consular a frames of acting at the origin O' of the system "the rectangular comprises, $x, y \& z$. The force F is maturing anger o $\theta_{x}, \theta_{y} \& \theta_{z}$ whet x, y, z axis.

The forces in he x deration $F_{x}=F \cos \theta_{x}$

$$
\begin{array}{rll}
y & F_{y}=F \cos \theta_{y} \\
\therefore & F_{z}=F \cos \theta_{z}
\end{array}
$$

The force can be defined by the vector.

$$
F=F \cos \theta_{x} i+F \cos \theta_{y} j+F \cos \theta_{y} k
$$

Magnitude of $F=\sqrt{F_{x}^{2}+F_{y}^{2}+F_{z}^{2}}$
The cosine of $\theta_{x}, \theta_{y} \& \theta_{z}$ are known as the direction cosines of the force F and are defined by $l=\cos \theta_{x}, \quad n=\cos \theta_{y} ; \quad n=\cos \theta_{z}$

$$
F=F\left(l_{i}+m_{j}+n k_{k}\right)=F \hat{n}
$$

unit vector $\hat{n}=l_{i}+m_{j}+n k$

$$
l^{2}+m^{2}+n^{2}=1
$$

and $\cos ^{2} \theta_{x}+\cos ^{2} \theta_{y}+\cos ^{2} \theta_{z}=1$.

Numescal Rroblans

1. f furce of gocin form an conges Z ori, $40^{\circ} 10.0$ nop. With $x, y, \& \quad Z$ wes witw the forme in the verder form.

$$
\begin{aligned}
F & =\hat{1} \\
& =\hat{1}\left(\cos \theta_{x} i+\cos \theta_{y} i+\cos \theta_{2}, k\right] \\
F & =520(\cos 60 i+\cos 45 j+\cos 120 k] \\
F & =(250 i+353.55 j-250 k) \mathrm{N}
\end{aligned}
$$

Sty urue AB a anchard bu roans of int at A. Tre force cavived Lg tie wite is 2.54% Determine a) The compersects of F_{x}, F_{y} and I_{I} Ithe forke
b) Te dizctur cotinas ars cjaugle wit all rievence cices

The co-orderates of

$$
\begin{aligned}
& {\left[\frac{1}{4}, 0,-3\right] a \sin [0,8,0]}
\end{aligned}
$$

$$
\begin{aligned}
& \overline{A B}=-4 i+3 j+3 k \\
& =\frac{\overline{-5}}{\bar{z}}=\frac{-i+3 j+3 x}{\sqrt{-2}+z^{2}+3^{2}} \\
& \hat{n}=-0 \cdot-2 \cdot i+3 \cdot\{3 j+0.38 k \\
& =8:-\cdots+n \\
& \bar{F}=\bar{F} \\
& \bar{F}=9.5(-0.924 i+0.3 n j+2 . z k)=F\left(12^{2}+i+1\right) \\
& \bar{F}=-1.06 i+2 \cdot 12 j+0.7958(k N)=F_{x} i+F_{j} j+F_{2} k \\
& F_{x}=-1.06 \mathrm{~W} ; F_{y}=2.12 \mathrm{kj} ; F_{z}=0.795 \mathrm{kin}
\end{aligned}
$$

Eincein cosinas

$$
\begin{aligned}
& l=-0.424 \\
& m=0.848 \\
& n=0.315
\end{aligned}
$$

-roge u-ts x suis, $E_{x}=\cos ^{-1}(-0.424)=115.057^{\circ}$
y axis, $C_{y}=32^{\circ}$
z ans, $\varepsilon_{z}=71.46^{\circ}$

Equilibrium of a Particle Subjected to Space Forces:-
When particle is in equilibrium, the resultant of the force system acting on it must be zero. $\bar{R}=0$

$$
\sum F_{x} i+\sum F_{y} j+\sum F_{z} k=0
$$

\therefore Equilibrium conditions are, $\sum F_{x}=0, \sum F_{y}=0, \sum F_{z}=0$
Numerical Boblems:

1. Determine the magnitude and the direction of force F shown in fig. $A\left[\begin{array}{lll}-4 & 8 & -2\end{array}\right]$

For equilibrium $\sum F=0$ ie, $R=0$
Equating i, j and k components to zero,

$$
\begin{aligned}
\sum F_{x}=0 \Rightarrow 500-349+F_{x} & =0 \\
F_{x} & =-151 \mathrm{~N} \\
\sum F_{y}=0 \Rightarrow-900+698+F_{y} & =0 \\
F_{y} & =202 \mathrm{~N} \\
\sum F_{z}=0 \Rightarrow-174.57+F_{z} & =0 \\
F_{z} & =17454 \mathrm{~N}
\end{aligned}
$$

$$
\begin{aligned}
& P=-151 i+202 j+174.54 k \mathrm{~N} \\
& F=306.95 \mathrm{~N} \\
& \theta_{x}=\cos ^{\prime}\left(\frac{-151}{306.95}\right)-119.467^{\circ} \\
& \theta_{y}=\cos ^{1}\left(\frac{202}{306.95}\right)-48.84^{\circ} \\
& \theta_{z}=\cos ^{1}\left(\frac{174-34}{206.95}\right)=55.34^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \text { A } 160,1,1, F \quad 10,5,1 \\
& \therefore|0,0|, 7|1, n, 3| \\
& \operatorname{lon}|-6 i+51| \\
& 3 \\
& \text { In. } \\
& -104017100(9)] \\
& \text { (0, (CA) (}+1+31) \\
& \sqrt{62} 3^{3} \quad \text { TGA } \mid 0 \text { finousk } \\
& \operatorname{lna}_{n} \frac{\operatorname{Tin} \mid 6 i-3 k]}{\sqrt{6^{2}+3^{2}}}=\operatorname{TIn}[0.9 i-0.45 k] \\
& W=-\operatorname{coj}(N)
\end{aligned}
$$

Arptaing the squilitrium ofor partide the spaces

$$
\begin{aligned}
& 31 \times 0 \\
& -0.77 T_{A B}+0.9 T_{C A}+0.9 T_{D A}-0 \\
& \sum F_{y}=0 \\
& 0.64 j-600 j \quad 0.64 T_{A B} 600=0 . \\
& T_{A B}=937.5 \mathrm{~N} \\
& \text { Ef, } 0 \\
& 0.45 T_{C A}-0.45 T_{D A}=0 \\
& T_{C A}=T_{D A} \\
& \text { [Subs } n \text { (} 1 \text {] } \\
& (1)-0.77 T_{A B}+T_{C A}(1.8)=0 \\
& \text { sults } T_{A B}=937.5 \Rightarrow T_{C A}=400.82 \mathrm{~N}=T_{A D}
\end{aligned}
$$

- Af square plate has a mass of loookg with centre at if. Calculate the tension in each cable when the plate lifted is horizontal?

ล

$$
\begin{aligned}
& {\left[-1 \cdot 2^{i}+1 \cdot 2 j\right][0,0,0 \cdot 4]} \\
& 0.1 \cdot 2 i-1.2 j+2 \cdot 4, k
\end{aligned}
$$

$$
\begin{aligned}
& A=[-1 \cdot 2 i+1 \cdot 2 j] \\
& B=[1 \cdot 2 i+1 \cdot 2 j] \\
& C=[0,-1 \cdot 2 j] \\
& O=[0,0,2 \cdot 4]
\end{aligned}
$$

$$
\begin{aligned}
& \text { Tension } T_{A_{0}}=T_{A 0}[1.2 i-1.2 j+2.4 k] \\
& \sqrt{1 \cdot 2^{2}+1 \cdot 2^{2}+2 \cdot 4^{2}} \\
& =T_{A 0}[0.4082 i-0.4082 j+0.8165 k]
\end{aligned}
$$

$$
\begin{aligned}
& T_{B O}=T_{B O}(-1.2 i-1.2 j+2.4 k) \\
& \sqrt{1.2^{2}+1.2^{2}+1.4^{2}}=T_{B O}[-0.4082 i-0.4082 j+0.816 \\
& \bar{T}_{c o}=\frac{1 \cdot 2 j+2 c_{1} k}{\sqrt{1 \cdot 2^{2}+24^{2}}}=T_{c o}[0-447 j+0.8944 k] \\
& w=-9.81 k \quad \text { (KN) } \\
& W=-9810 k(N) \\
& 1000 \mathrm{~kg} \times 9.81 \mathrm{~N} \\
& 9810 \mathrm{~N} \\
& \text { 9⿵⺆一 KN }
\end{aligned}
$$

When the plate is in equilibrium，

$$
\begin{align*}
& \sum F_{x}=00.4082 T_{A_{0}}-0.4082 T_{B O}=0 \\
& T_{A O}=T_{B O}=T \\
& \begin{aligned}
\sum F_{y}=0 \quad & =0.4082 j-0.4082 \\
& -0.4082 T_{A O}-0.442 T_{B O}+0.447 T_{C O}=0
\end{aligned} \\
& T[-0.8164]=-0.447 T \mathrm{co} \\
& T_{c_{0}}=\frac{0.8164 T}{0.447} \\
& T_{C 0}=1.8264 \mathrm{~T} \tag{2}\\
& \sum F_{Z}=0 \Rightarrow 0.8165 T_{10}+0.8165 T_{B 0}+0.8944 T_{C O}-9810=0
\end{align*}
$$

Apply（1）\＆（2）

$$
\begin{aligned}
& 1.633 T+0.8944 \times 1.826 H T=9810 \\
& 3.26652=3810 \\
& T=3003.18 \mathrm{~N} \Rightarrow T_{A 0}-T_{B 0}=3003.18 \mathrm{~N} \\
& T_{C O}=5485.0168 \mathrm{~N}
\end{aligned}
$$

Moment
The force acting on a rigid bodes has not only the tendency to translate but it has a tendency to rotate the body.

The turning effect of a force measured by a quantity called Moment.

$$
\therefore M=F \times d
$$

The unit of moment is Nm .
Example:
Push or pull if a dor by holding the handle about the hinge. Applying force to a spanner, when turning a nut while tightening.

The affect depends on the magnitude of the force and the Lr distance called moment arm.
Free Body Diagram
It is a diagram which shows all the forces acting at a rigid bodes invoking,

1. Self weight
2. Normal reactions
3. Frictional force
4. Applies force
5. External moment applied.

Typos of leads.
1 Conecnerated or brine lace

If a load is acting ob a
 pratrular print, then the load is ratted paine lose or Comancuies load
Q Uniforms dismbutod Lond (UDD)
To the fond is distributed uniformly through a Length, it is
 called 'Uniformly distributed trad'.
Example Sols wright of the beam or Shaft. Here a ODI of $10 \mathrm{kN} / \mathrm{m}$ is acting throughout a distance of 3 m lough. Therefore the total load is $3 \times 10=30 \mathrm{kN}$ which is acting at a centroid distance of 1.5 m from fixable 3. Uniformly Varying Load

The intensity of the load is varying from a point to anther
 point linearly as shown.

Here the load intensity is w/unit (ength at fixed end and it decreases uniformly to zero at A.' 4 External Moment:

The applied moment is also a type do load. The fig shows a
 moment of 10 kNm acting on a beam at ' f '.

Yus of summes and Reactions
Conmentime Whon the fuco methene in a particular dicecrept is resuiceed, the suppost is colled Constraurs, Where $\hat{\text { We rexckiome is spoter developect. }}$ Wh fine in Space bias 6 deqza's if fiecod=m Tiay aro Urouslavion in x, y \& z dieccierss and ratation about
 is blierictad, a batil be inoroduced inab

$$
\stackrel{Q}{2} \text { Reller suppoit }
$$

3. Hirgeol supperz

4. Fixeod Support

Bcam
Boam is a horizontal structuzal mombon sulcjected to luarsverse loged It gets defiction what bie leages are apdiad Beams are Classified m kie basis ob Suppor Thoy aze as toliz

(a) $55 B$

caridilencr beram (b)

Cikharging beam

1

Taking mamore about 'B'
\qquad
"raking Nowzont above "A

$-200 \cos 45 \times 4+200 \sin 45 \times 10=848.520$ (crus)
M. Tho place is ached upon by throe forces and two Couples as shown in fig, Determine the resultant of these farce couple system are find coordinate x ante of the point on the x axis through which the resultant is passed.

$$
\begin{aligned}
& \sum F_{x}=1.51-3 \pi=-1.5 \mathrm{kN} \\
& S F_{y}=-2 \mathrm{kN} \\
& R=\sqrt{1.5^{2}+2^{2}}=2.5 \mathrm{kN} \\
& \theta=\tan ^{-1}\left(\frac{.2}{1.5}\right)=53.13^{\circ}
\end{aligned}
$$

Taking marnert aboul 0 ,

$$
\begin{array}{rlrl}
M_{0} & =-2(0.5)+3(0.3)-1.5(0.2)-0.1-0.08 \\
& =-0.58 \mathrm{kNm} . & & d=\frac{\sum M}{R}=\frac{0.52}{2.5} \approx \\
M_{0} & =0.58(\mathrm{cw}) & & d=0.232 \mathrm{~m}
\end{array}
$$

The co-ordinate x of the point on x axis through which the resubant passes is go by,

$$
\begin{aligned}
& x=\frac{M_{0}}{\sum F_{y}}=\frac{+0.58}{+2}=0.29 \mathrm{~m} \\
& x=290 \mathrm{~mm}
\end{aligned}
$$

If we want to find the iNtersection,

$$
\begin{aligned}
& y=\frac{M_{0}}{\sum F_{x}}=\frac{+0.58}{1.5}=0.387 \mathrm{~m} \\
& y=387 \mathrm{~mm}
\end{aligned}
$$

The them forces end a
option to se angle bracket.
find if xe issuleant of the system of fares
ii) Deck the prints where the line of erection of the Exultant intersect the line AB and line BC.

$$
\begin{aligned}
\sum F_{x} & =-200+125 \cos 60=-137.5 \mathrm{~N} \\
\sum F_{y} & =125 \\
R & =\sqrt{\sum F_{x}^{2}+\sum F_{y}^{2}}=149.33 \mathrm{~N} \\
\theta & =\tan ^{-1}\left(\frac{58.2532}{137.5}\right) \\
\theta & =22.96^{\circ}
\end{aligned}
$$

Moment about ${ }^{\circ} 0, \quad M_{0}=(50 \times 300)-(200 \times 0.2)+8$

$$
\begin{aligned}
& M_{0}=-17 \mathrm{Nm} \\
& M_{0}=17 \mathrm{Nm}(c w)
\end{aligned}
$$

The force couple system at 0 will be reduced into a single force at a point located at the $\mathcal{L r}_{2}$ dist

$$
\begin{aligned}
& d=\frac{\sum M}{R}=\frac{17}{149.33}=0.11384 \mathrm{~m} \\
& d=113.84 \mathrm{~mm}
\end{aligned}
$$

x \& y be intersection of line of action of single force on the lire $A B \& B C$

The intersection points also be found lay or checked y

$$
\begin{aligned}
& x=\frac{\sum M_{0}}{\sum F_{y}}=\frac{17}{58.253}=291.83 \mathrm{~mm} \\
& y=\frac{\sum M_{0}}{\sum F_{x}}=\frac{17}{137.5}=123.6 \mathrm{~mm}
\end{aligned}
$$

(or)

$$
\begin{aligned}
& x=\frac{d}{\sin \theta}=\frac{113.84}{\sin 22.96}=291.83 \mathrm{~mm} \\
& y=\frac{d}{\cos \theta}=\frac{113.82}{\cos 22.96}=123.63 \mathrm{~mm} \\
&
\end{aligned}
$$

8
 force, as shomen in fiy. lind tho mesultant in magntuplo.
 (t) Aho comenत

$$
\begin{aligned}
& \text { Ste trembot 10 Coses } \\
& 1 \text { 100ncan-4cos 3 } \\
& =10.65 \mathrm{kN} \\
& \text { EPy } 6 \sin 60+12 \sin 9 \\
& -4 \sin 30-10 \sin 30 \\
& =6.65 \mathrm{kN} \\
& R=12.597 \mathrm{kN} \\
& \theta=32 \cdot 02^{\circ} \\
& 2 M_{A}=(6 \cos 60 \times 2)-(12 \cos 45 \times 2) \\
& -(10 \sin 30 \times 2)+(12 \sin 45 \times 2) \\
& =-4 \mathrm{kNm} 0 \\
& \text { Ify } \\
& 2 M_{A}=q \mathrm{kNM}(C W) \\
& d=\frac{\sum M A}{R}=0.5987 \mathrm{~m} \quad 0.3175 \mathrm{~m} \\
& x=\frac{\sum M_{A}}{\sum F_{Y}}=0.5987 \mathrm{~m} \\
& y=\frac{\sum M_{A}}{\sum F_{X}}=0.3745 \mathrm{~m}
\end{aligned}
$$

9 Determine the magnitude and direction of a single force P, which keeps the system in equilibri: The system of forces acting is shown in fig. 1 . Ste ln:-
To find, ' E '.

$$
\begin{aligned}
& \sum F_{x}=25-3.5=21.5 \mathrm{kN} \\
& \sum F_{y}=-6-5=-11 \mathrm{kN} \\
& R=30.55 \mathrm{kN} \\
& \theta=\tan ^{-1}\left(\frac{11}{21.5}\right)=27.0955^{\circ} \\
& M_{A}=(-5 \times a)-(25 \times a)=-30 a \\
& M_{A}=30 a(\mathrm{cW}) \\
& d_{A E}=\frac{\sum M_{A}}{R} \quad x=\frac{\Sigma M_{A}}{\Sigma F_{y}} \\
& =\frac{\sum M_{A}}{\sum F_{x}}= \\
& d_{A E}=
\end{aligned}
$$

SHy

The equilibrant $E=30.55 \mathrm{kN}$ acting at E with angle 158.9° with the x axis as shown in fig. 3
14. Determine the resultant of the non concurrent, non parallel system of forces shown in fig.

$$
\begin{aligned}
\Sigma F_{x}= & 100 \cos 45-120 \cos 30+50 \cos 20 \\
= & 13.77 \mathrm{~N} \\
\Sigma f_{y}= & 80+100 \sin 45+120 \sin 30-50 \sin 20 \\
= & 193.60967 \mathrm{~N} \\
R= & 194.0987 \mathrm{~N} \\
M_{0}= & (-100 \cos 45 \times 1)+(100 \sin 45 \times 1) \\
& (120 \cos 30 \times 5)+(120 \sin 30 \times 8) \\
& (50 \cos 20 \times 1)-(50 \sin 20 \times 8] \\
\sum M_{0}= & 909.79 \mathrm{Nm}(\mathrm{ccw})
\end{aligned}
$$

Now the force and couple at ' O ' is deduced into a single resuleart at (x, y). The ordinate of resultant is given by, $d=\frac{\sum M_{0}}{R}$

$$
\begin{aligned}
& x=\frac{\sum M_{0}}{\sum F_{y}}=\frac{909.79}{193.60967}=4.699 \mathrm{~m} \\
& y=\frac{\sum M_{0}}{\sum F_{x}}=\frac{909.79}{13.77}=66.07 \mathrm{~m}
\end{aligned}
$$

15. Find the single resultant force for the system of loosing acting on the beam as shown in fig.

$$
\begin{aligned}
& \frac{1}{2}(L L) \text { is acct, } \\
& \frac{2}{3} L_{A} \text { distance }^{\prime} A \text {. }
\end{aligned}
$$

Load (1) having Magrutude of $[(60 \times 5) \times] N(\downarrow)$ acting at $\frac{5}{2} \mathrm{~m}$ from ' A '.

Load (2) having magnitude of $\left(\frac{1}{2} \times 2 \times 140\right) N(v)$ acting at $3+\left(\frac{12}{2} \frac{1}{3}\right) \mathrm{m}$ from ' A ' Liorl(3) having magnitude of $\frac{\frac{1}{3}(2)}{2}$ (1) (150) N(1) acting at $3+2+\left(\frac{1}{3}\right) \mathrm{m}$ from ' A.'

$$
\begin{aligned}
R=F_{y} & =-300-140+75=-365 \mathrm{~N}=365 \psi \\
\sum M_{A} & =-300 \times 2.5-140 \times 4.33+75 \times 5.33 \\
& =-956.45 \mathrm{~N} \cdot \mathrm{~m} \\
& =95645 \mathrm{Nm}(\mathrm{cW})
\end{aligned}
$$

Position of single force R at a distance $d=\frac{\sum M_{H}}{R}$

$$
\begin{aligned}
& d=\frac{956.45}{365} \\
& d=2.62 \mathrm{~m} \text { from } A(\downarrow)
\end{aligned}
$$

16. Find the simplest equivalent force for the system of loading acting on the beam shown in fig.

Load (1) is having magnitucle of $(2 \times 2.5) N(\psi)$ acting at $\frac{2.5}{2}$ firm ' A ',
Lad (2) is having magnitude of $\frac{1}{2}(1)(8) \quad N(\downarrow)$ actiry at $1.5+\left(1-\frac{1}{3}\right) \mathrm{m}$ from ' A '.
Load (3) is having magnitude of $\frac{1}{2}(4.5)(5) N(1)$ acting at $\frac{45}{3} \mathrm{~m}$ c from ' A '.

 - Nowise vonsonk Thesichedurse moment

 \therefore Y - Wasut vony prise os rever
 $\operatorname{tin} \theta=\frac{3}{4}-57^{\circ}$ 1. Bind ban jexrion at the supror A \& B for a bxen a cheown in fíg.

$$
16<n
$$

$$
\therefore \therefore 30 \text { x } 300 \text { or } 1.5001 .50 \text { of } 4
$$

k
Soller suppont

Ae ind ' B ' The reactions,
$\tan \theta=\frac{4}{3}$

$$
\begin{aligned}
\tan \alpha=\frac{4}{3} & >\alpha=53.13^{\circ} \\
\theta=90-\alpha & =36.86989^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
\tan \theta & =\frac{4}{3} \\
\theta & =53.13^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
\text { Horizontal force } & =10 \cos \theta \\
& =6 \mathrm{kN} \\
\text { Veridical force } & =10 \sin 0 \\
& =8 \mathrm{kN}
\end{aligned}
$$

Free body diagram:-

Applying equilibrium conditions,

$$
\begin{align*}
& \sum F_{x}=0 \Rightarrow H_{A}-6-R_{B} \sin 36.87^{\circ}=0 \\
& \sum F_{y}=0 \Rightarrow V_{A}-8-30+R_{B} \cos 36-87^{\circ}=0 \\
& M_{A}=0 \Rightarrow-(8 \times 2)-(30 \times 5.5)+10+\left(R_{B} \cos 36.87^{\circ} \times 10\right)= \\
& R_{B}=21.375 k N
\end{align*}
$$

Subs R_{B} value is (1) \& (2)

$$
\begin{aligned}
(0) \Rightarrow H_{A} & =18.825 \mathrm{kN} \\
\operatorname{eqn}(2) V_{A} & =20.9 \mathrm{kN} \\
R_{A} & =\sqrt{H_{A}^{2}+V_{A}^{2}}=28.128^{\circ} \\
\theta_{A} & =\tan ^{-1}\left(\frac{20.9}{18.825}\right) \\
\theta_{A} & =47.99^{\circ} \text { with Horizontal }
\end{aligned}
$$

4.

A load P g 3500 N if acting on the boom, which is held by cabled $B C$ as shown is fig. The weight of the boom can be neglected.
a) Draw the five booby diagrams of the boom
b) Find the tension in cate $B C$
c) Determine the reaction of A.

FAD

$$
\text { 1. } \begin{aligned}
& \triangle A D E, \\
& \cos \theta=\frac{A d j \cdot \operatorname{side}(A E)}{3.75} \\
& \cos 50=\frac{\operatorname{Adj} \cdot \operatorname{sde}(A E)}{3.75}
\end{aligned}
$$

$$
\text { Adios sid }=2.41 \mathrm{~m}
$$

$$
\begin{aligned}
& \triangle A B F \\
& 2 \cdot \cos 50
\end{aligned}=\frac{\text { Adj.siale }(A F)}{5 \cdot 25}
$$

($A f$)
Adj. side $=3.3746 \mathrm{~m}$
$\triangle A B F$,
3. $\sin 50=\frac{\text { OPP. Side }}{5.25}$

OPP:Sizle $=4.0217 \mathrm{~m}$ (Bf)

$$
\begin{aligned}
& \sum M_{A}=0 \\
& \sum M_{A}=-(3500 \times 2.41)-(T \sin 30 \times 3.3746)+(T \cos 30 \times 4.0217 \\
& -8435-1.6873 T+3.4829 T=0 \\
& 1.7956 T=8435 \\
& \quad T=4697.6 \mathrm{~N}
\end{aligned}
$$

$$
\begin{aligned}
& \Sigma f_{x}=0 \\
& H_{A}- T \cos 30=0 \\
& T \cos 30=H_{A} \\
& H_{A}=4068.2486 \mathrm{~N}
\end{aligned}
$$

$\Sigma F_{y}=0$

$$
\begin{aligned}
& V_{A}=T \sin 30+3500 \\
& V_{A}=5848.8 \mathrm{~N} \\
& R_{A}=7124.54 \mathrm{~N} \\
& \theta_{A}=\tan ^{-1}\left(\frac{5848.8}{4068.2486}\right) \\
& \theta_{A}=55.179^{\circ}
\end{aligned}
$$

7. In the fig. lever $A B$ is hinged at C and attached to a cable at A. If the lever is Subjected to a horizontal force of 750 N at B, determine,
a) tension in the cable
b) reaction at hinged supp

$\triangle A C E$,
(i) $\cos 30=\frac{E C}{250} \Rightarrow E C=216.5 \mathrm{~mm}=A F$
(ii) $\sin 30=\frac{A E}{250} \Rightarrow A E=125 \mathrm{~mm}=C F \Omega$
(iv) $\triangle A D F$,

$$
\begin{aligned}
\tan \theta & =\frac{C F+C D}{A F} & \text { (iii) } \triangle C G B \\
\tan \theta & =\frac{125+250}{216.5} & \sin 30=\frac{C G}{250} \\
\theta & =\tan ^{-1}(1.7321) & C G=125 \mathrm{~mm} \\
\theta & =60^{\circ} &
\end{aligned}
$$

Applying equilibrium conditions,

$$
\sum M_{A}=0 \Rightarrow\left(V_{C} \times 216.5\right)+\left(H_{c} \times 125\right)-(750 \times 250)=0
$$

(i)

$$
\begin{gathered}
\sum M_{c}=0 \Rightarrow-(T \cos 60 \times 125)+(T \sin 60 \times 216.5) \\
-(750 \times 125)=0 \\
-62.5 T+187.49 T=937.50 \\
T=375 \mathrm{~N} \\
T=750 \mathrm{~N} \text { ins } \\
T
\end{gathered}
$$

Resultant of Non incurrent space Force system: (3 D-Rigid Body)

1. A tension T of magnitude 10 kN is applied to en cable attached to the top A of rigial mass and secured to the ground at B as Shown in fig. Determine moment of tension T about I axis passing through the base ' O '. Sola:

The position Vector of

$$
A=[0,15,0], B=[12,0,0]
$$

Expressing the T as vector.

$$
\begin{aligned}
\overline{A B} & =12 i-15 . j+9 k \\
\hat{n} & =\frac{\overline{A B}}{|A B|}=\frac{12 i-15 j+9 k}{\sqrt{12^{2}+5^{2}+9^{2}}} z k^{\prime} \\
\hat{n} & =0.565685 i-0.7071 j+0.42426 k \\
\bar{T} & =T \hat{n}_{T} \\
& =10\left[\hat{n}_{T}\right] \\
\bar{T} & =5.65685 i-7.07 i)+42426 k
\end{aligned}
$$

Moment of T about $O, \bar{M}_{0}=\bar{\gamma}_{O A} \times \bar{T}$

$$
\left.\begin{array}{rlrl}
\text { Moment of } T \text { about } O, M_{0} & =10 A & \\
=E[(15 \times 4-2426)-0]-j[0.0] & & & \\
+k[0-(15 \times 5-65685)] & & & \\
i & & 15 & 0 \\
0 & & \\
5.65685 & -7.07 & 4.2426
\end{array} \right\rvert\,
$$

A rom hod $A B$ is shown in fig. A is a fixed end. Welted cable is stretched from B to point C ' on heretical wall. If the tension in the cable is 1500 N . Find the moment q force exerted oh. by the cable at ' B ' about the point iA:

$$
\begin{aligned}
A & =[0,0,0] \\
B & =[10,0,0] \\
C & =[0,4,-5] z \\
\overline{T_{B C}} & =T_{B C} \frac{[-10 i+4 j-5 k]}{\sqrt{10^{2}+4^{2}+5^{2}}} \\
& =1500[\hat{n}]
\end{aligned}
$$

$$
\overline{T_{B C}}=-1263 i+505.5 j-631.61 k(N)
$$

Moment of force exerted by the torsion about if

$$
\begin{aligned}
\bar{M}_{A} & =\overline{r_{A B}} \times \bar{T}_{B C} \\
& =\left|\begin{array}{ccc}
i & j & k \\
10 & 0 & 0 \\
-1263 & 505.5 & -631.61
\end{array}\right| \\
\overline{M_{A}} & =6316.1 j+5055 \mathrm{k}(\mathrm{NM})
\end{aligned}
$$

Two forces are acting on a slab as shown in fog Poploce this force system into an equivalone force. couple system at 0 .
Sol:-

$$
\begin{aligned}
& \text { position Vectors of } A k B \\
& o[0,0,0] A] 6
\end{aligned}
$$

$$
0[0,0] A[6,2,3]
$$

$$
\begin{aligned}
& \left.\bar{Y}_{O A}=6 i+2 j+3 k, 2\right] \\
& \left.\bar{F}_{O B}=6 i, 0\right], B[6,2,0 \\
& \overline{F_{1}}=30 \frac{[6 i+2 j+3 k]}{\sqrt{36+4+9}} \\
& \overline{F_{1}}=25.71 i+8.57 j+12.857 k \quad(\mathrm{kN}) \\
& \overline{F_{2}}=20 \cos 60 i=20 \sin 60 k \\
& \overline{F_{2}}=10 i-17.32 k(\mathrm{kN}) \\
& \overline{\sum F}=35.71 i+8.57 j-4.463 \mathrm{k}(\mathrm{kN})
\end{aligned}
$$

a The moment about $0, \sum \bar{M}_{0}=\overline{\gamma_{0} A} \times \overline{F_{1}}+\overline{r_{0 B}} \times F_{2}$ (Here $\overline{\gamma_{0}} \times \bar{F}_{1}$) is zero because F_{1} passes tho O

$$
\begin{aligned}
\sum \bar{M}_{0} & =\bar{Y}_{O B} \times F_{2} \\
& =\left|\begin{array}{ccc}
i & j & k \\
6 & 2 & 0 \\
10 & j 0 & -17.32
\end{array}\right| \\
& =i(-34.64)-j(-103.92)+k(-20) \\
\sum \bar{M}_{0} & =-34.64 i+103.92 j-20 \mathrm{k} \quad \mathrm{kNm}
\end{aligned}
$$

Equitiriun of hon concurane space forca syotron $[30$ Sid Bodes

If a bodg is said to be agwilibrium.

$$
\begin{array}{ll}
\sum \bar{R}=c, & \sum \bar{M}=0 \\
\sum F=0 & \sum F_{x} i+\sum f_{y} j+\sum F_{z} k=c \quad \text { and } \\
\sum \bar{A}=0 & \sum M_{x} i+\sum M_{y j} j+\sum M_{z} k=0
\end{array}
$$

Fror thele equation.

$$
\begin{array}{lll}
\sum F_{x}=0 & \sum F_{y}=0 & \sum F_{z}=0 \\
\sum M_{y}=0 & \sum M_{y}=0 & \sum M_{z}=0
\end{array}
$$

Thase are the sir Conditions for equitibium If o riged butes Sujjectes to non-concurrant space if

1. A Camara having mas of 1.8 kg rests on a tupod litits Segs equalle spared and cach moking an angle of 20°. Assuming tia camera is at a pount 1200 mm above ghound level. Detcrmine the force is ade

Let es assurse trat the conpression reaction al each leg is T. Tagle babucen ths \log and vertiral is girer as as 20°.

This sysbem is considerad Os a coricuivent force system. Applyirs equilibrium coroition is
 y diection.

$$
\Sigma F_{y}=0
$$

$$
\begin{aligned}
3 T \cos 20 & =17.658 \\
T & =6.26375 \mathrm{~N}
\end{aligned}
$$

unifam cross section and homogeneous 2000N is having a ball and socket support at A", and its cod ' B ' is resting at the corner If Smooth waralls as Shaven in fig. Determine the reactions dercloped at the ards A \& B.
Secy..
B_{x}, B_{2} are the normal - reactions at ' B '

At 'A', Ball and socket joint, there are 3 components if reaction $A x, A_{y}$ and A_{z}

The Coordinates

$$
z k
$$

$$
A[6,0,+3]
$$

$$
B[0,4,0]
$$

$$
G[3,2,1.5]
$$

2 reactions, $R_{A}, R_{B} \& 1$ load W.
There are three forces given by vectors.

$$
\begin{align*}
& \overline{R_{B}}=B_{x} i+B_{z} k \tag{0}\\
& \bar{W}=-2000 j(N) \tag{2}\\
& \bar{R}_{A}=A_{x} i+A_{y} j+A_{z} k \tag{3}
\end{align*}
$$

There are 5 unknown reactions.

Moment about $A, \sum \bar{M}_{A}={\overline{\gamma_{A B}}} \times \bar{R}_{B}+\bar{\gamma}_{A G_{1}} \times \bar{\omega}$
Distance vector, $A B, \bar{\gamma}_{A B}=-6 i+4 j-3 k$

$$
\text { So, } \begin{aligned}
& \begin{aligned}
& \sum \bar{M}_{A}, \bar{\gamma}_{A G}=
\end{aligned}=\left|\begin{array}{ccc}
i & j & k i+2 j-1.5 k \\
-6 & 4 & -3 \\
B_{x} & 0 & B_{z}
\end{array}\right|+\left|\begin{array}{ccc}
i & j & k \\
-3 & 2 & -1.5 \\
0 & -2000 & 0
\end{array}\right| \\
&= i\left(4 B_{z}\right)-j\left(-6 B_{z}+3 B_{x}\right)+k(-4 B x) \\
&+ \\
& i(-3000)-j(0)+k(6000) \\
& \sum M_{A}=\left(4 B_{z}-3000\right) i+\left(6 B_{z}-3 B_{x}\right) j+\left(6000-4 B_{x}^{x}\right. \\
& \sum M_{A}= M_{x} i+M_{y} j+M_{z} k
\end{aligned}
$$

$$
\sum M_{x}=0, \Sigma M_{y}=0 \quad \& \Sigma M_{z}=0
$$

[equilibrium Condens]

$$
\begin{aligned}
& \sum M_{x}=0, \sum M_{y}=0 \\
& \sum M_{x}=0 \Rightarrow 4 B_{z}-3000=0 \Rightarrow 6 B_{z}-3 B_{x}=0 \Rightarrow B_{z}=750 \mathrm{~N} \\
& \sum M_{y}=0 \Rightarrow B_{x}=1500 \mathrm{~N}
\end{aligned}
$$

$$
\bar{R}_{B}=1500 i+750 k
$$

[from en (1]]
Now, Resultant force $=$ Reaction at $A \& B+$ Lond w.

$$
\begin{aligned}
&=(1)+(2)+(3) \\
& \sum \bar{R}=\left(1500+A_{x}\right) i+\left(-2000+A_{y}\right) j+\left(750+A_{1}\right. \\
& \sum \bar{R}=\sum F_{x} i+\sum F_{y} j+\sum F_{z} k \\
& \sum F_{x}=0, \sum F_{y}=0, \sum F_{z}=0, \quad A_{x}=-1500 N, A_{y}=2000 \mathrm{~N}, A_{z}=-750
\end{aligned}
$$

6.

hel, by by a ball and socket at A and two ropes Bt \& $B f$ as shown in fig. If the tension in rope CD is 10 KN and assuming that $C D$ is $11 l$ to the x axis, determine the tension in ropes $B E$ and $B F$ and the reaction at A.

Let $F_{1} \& F_{2}$ bo the

- forces at the cable BF, BE.
R_{A} be the reaction at ' A '. $C D$ is the force $11 l$ to x-axis So, 3 forces, 1 reaction.

$$
z L \quad 6 m=1
$$

The co-ordinates of $A[0,0,0]$

$$
\begin{aligned}
& B[0,8,0] \\
& C[0,10,0] \\
& E[6,0,5] \\
& F[6,0,-5]
\end{aligned}
$$

3 forces, and 1 reaction tan be written in vector form.

$$
\begin{aligned}
& \bar{F}_{3}=-10 i(k N) \\
& \bar{R}_{A}=A_{x} i+A_{y} j+A_{2} k \quad \text { (Ball \& socket support) } \\
& F_{1}=\frac{F_{1}(\overline{B F})}{|B F|}=F_{1} \frac{\left(6 i-8^{2} j-5 k\right)}{\sqrt{6^{2}+8^{2}+5^{2}}}=0.536 F_{1} i-0.715 F_{1} j-0.447 F_{1} k \\
& F_{2}=\frac{F_{2}(\overline{B E})}{|\overline{B E}|}=F_{2} \frac{(6 i-8 j+5 k)}{\sqrt{\mid B E}}=0.536 F_{2} i-0.715 F_{2} j+0.447 F_{2} k
\end{aligned}
$$

Equilibrum Conditzons:

$$
\begin{aligned}
& \sum R=0, \quad \sum r_{y}, \text { \& } r_{y}, \sum \sum F_{z}=0 \\
& \sum M=0, \quad \sum M_{x}, \sum M_{y} \& \sum M_{z}=0
\end{aligned}
$$

Taking Momene cabout ' A '.

$$
\begin{align*}
& \overline{S M}_{A}=\bar{\gamma}_{A C} \times \bar{F}_{3}+\bar{\gamma}_{A B} \times \bar{F}_{1}+\bar{\gamma}_{A B} \times \overline{F_{2}} \\
& \overline{\gamma_{A C}}=10 \bar{j} ; \quad \bar{\gamma}_{A B}=8 j \\
& \sum M_{A}=\left|\begin{array}{ccc}
i & j & k \\
0 & 10 & 0 \\
-10 & 0 & 0
\end{array}\right|+\left|\begin{array}{ccc}
i & j & k \\
0 & 8 & 0 \\
0.336 F_{1}-0.75 F_{1} & -0.46
\end{array}\right|+\left\lvert\, \begin{array}{ccc}
i & j & j \\
0 & 8 & 0.536 F_{2} \\
-0.715 F_{2} & 0
\end{array}\right. \\
& =\{k(1000)\}+\left\{i\left(-3.576 F_{1}\right)-j(0)+k\left(-48 F_{1}\right)\right\} \\
& +\left\{i\left(3.576 F_{2}\right)-j(0)+k\left(-4.28 F_{2}\right)\right\} \\
& \sum \overline{M_{A}}=i\left(3.576 F_{2}-3.576 F_{1}\right)+0 j+k\left(100-3.596 F_{1}-3.590\right. \\
& \left.\sum \bar{M}_{A}=\sum M_{x} i+S M_{y}\right)+\left\langle M_{z} k\right. \\
& \sum M_{x}=0, \quad 3.576 F_{2}-3.576 F_{1}=0 \Rightarrow F_{1}=F_{2} \tag{1}\\
& \sum M_{2}=0, \quad 100-3.576 F_{1}-3.576 F_{2}=0 \Rightarrow 4.288\left(F_{1}+F_{2}\right)=100
\end{align*}
$$

From eqn (2) $\Rightarrow 4.288(x)=100 \quad$ [iplut $\left.F_{1}+F_{2}\right] x$

$$
\begin{aligned}
x & =23.32 \\
F_{1}+F_{2} & =23.32 \mathrm{kN}
\end{aligned}
$$

subs eqn (1) is (3)

$$
2 F_{1}=23.32 \text {, so, } F_{1}=F_{2}=11.66 \mathrm{kN}
$$

$$
\begin{aligned}
& R=i_{3}+R_{A}+1+10 \\
& \sum R=\left((+10+)_{x}+106261,+0.526 t_{2}\right)+j\left(A_{y}-0.715 f_{1}-0.115 h_{2}\right) \\
& \text { ER - } 1 k(0,10.4471+0.4475) \\
& 6 \\
& 2 C_{x}=0,-101 A_{x}+0.5361,100536120 \\
& \left|A_{x}-2.49952 \mathrm{kN}\right| \\
& \text { 之1y:0, Ay-0.715 F, } 0.7151_{2}=0 \\
& A_{y}=16.6738 \mathrm{KN} \\
& \sum f_{2}=0, \quad A_{2}-0.447 f_{1}+0.444 f_{2}=0 \quad\left[\because f_{1}=f_{2}\right] \\
& A_{z}=0
\end{aligned}
$$

Answers:

1. Tensions in the ropes, $f_{1}=f_{2}=11.66 \mathrm{kN}$
2. Reaction at A is in by, $R_{A}=(-2.49952 i+16.6738 j) \mathrm{kN}$

Unit 3 - Distributed Forces
Centreios:
Centricit is defined as the pail at which the total area, Volume or larger ais assumed do be
 and Volume. It
Canoe of Mags

Centre of Mass is a point when the cruise mas of a body may be adiumed to be conconeratod. Centre af Gravity:

It is a pine through which the line 8 action of the wright of the body passes innospocive of the position of the kerry. It is represented as Cia. It is velate to distribution of mass.
Numerical Problems:

1. Find time kenorid of the L section Shown in fig.

$$
\begin{aligned}
& \bar{X}=\frac{\sum A \bar{x}}{\sum A}=\frac{52000}{2800}=18.571 \mathrm{~mm} \\
& \bar{Y}=\frac{\sum A \bar{y}}{\sum A}=\frac{108000}{2800}=38.57 \mathrm{~mm}
\end{aligned}
$$

centroid $C[18.571,38-57] \mathrm{mm}$
2. Find the centroid of the T-section shown in fig.

This section is symmetrical about y-axis
Son $\bar{x}=\frac{60}{2}=30 \mathrm{~m}$

Because of symmetry \bar{X} can be located immediatdy

	$\bar{X}=\frac{60}{2}=30 \mathrm{~mm}$		
S. No	section	$A\left(\mathrm{~mm}^{2}\right)$	$Y(\mathrm{~mm})$
1.	Rectangle	50×8	$50 / 2$
R.	Rectangle	60×8	10000
		$\sum A=880$	

$$
Y=\frac{\sum A Y}{\sum A}=\frac{35920}{880}=40.818 \mathrm{~mm}
$$

\therefore Centroid, $[30,40.818] \mathrm{mm}$
?. Locate the centroid of the I section shown in fig.

S. No	Section	$A\left(\mathrm{~mm}^{2}\right)$	$x(60 \mathrm{~m})$	$\bar{y}(\mathrm{~mm})$	$A \bar{x}$	$A \bar{y}$
1.	Rectangle	800×100	$500 / 2$	$100 / 2$	32×10^{6}	4×10^{6}
2.	Rectangle	500×50	$550+\frac{50}{2}$	$100+\frac{500}{2}$	14575×10^{6}	8.75×10^{6}
3.	Rectangle	600×100	$350+\frac{600}{2}$	$600+\frac{100}{2}$	39×10^{6}	39×10^{6}
1.				85375×10^{6}	51.75×10^{6}	

$$
\begin{aligned}
& \bar{x}=\frac{\sum A \bar{x}}{\sum A}=517.42 \mathrm{~mm} \\
& \bar{y}=\frac{\sum A \bar{Y}}{\sum A}=313.64 \mathrm{~mm}
\end{aligned}
$$

4. Locate the centroid of the area shown in fig.

Lotake the controid of rarea shown in fig.

Soln:
Area (1): Receangle

$$
\begin{aligned}
& A_{1}=12 \times 6=72 \mathrm{~cm}^{2} \\
& x_{1}=\frac{12}{2}=6 \mathrm{~cm}, \quad y_{1}=\frac{6}{2}=3 \mathrm{~cm}
\end{aligned}
$$

Area (2): Righe angle Triangle

$$
\begin{aligned}
& A_{2}=\frac{1}{2} b h=\frac{1}{2}(12)(6)^{2}=36 \mathrm{~cm}^{2} \\
& x_{2}=b-\frac{6}{3}=12-\frac{12^{4}}{3}=8 \mathrm{~cm} \\
& y_{2}=b+\frac{h}{3}=6+\frac{6}{3}=78 \mathrm{~cm}
\end{aligned}
$$

Area(3): Semicircle

$$
\begin{aligned}
& A_{3}=\frac{\pi r^{2}}{2}=\frac{\pi(6)^{2}}{2}=56.55 \mathrm{~cm}^{2} \\
& x_{3}=12+\frac{4 r}{3 \pi}=14.546 \mathrm{~cm} \\
& y_{3}=\frac{12}{2}=\frac{d}{2}=6 \mathrm{~cm} \\
& \bar{x}=\frac{A_{1} x_{1}+A_{2} x_{2}+A_{3} x_{3}}{\sum A}=\frac{1542.5763}{164-55}=9.374 \mathrm{~cm} \quad C=\left(\frac{4 r}{3 \pi}, \frac{d}{2}, \frac{4 R}{3 \pi}\right. \\
& \bar{y}=\frac{A_{1} y_{1}+A_{2} y_{2}+A_{3} y_{3}}{\sum A}=\frac{627.3}{164.55}=5.125 \mathrm{~cm}
\end{aligned}
$$

shaded
8. Locate the centroid of the plane area shown in til

Area-(1) Square

$$
\begin{aligned}
& \text { Area-1 Square } \\
& A_{1}=200 \times 200=4000 \mathrm{~mm}^{2} \\
& x_{1}=100 \mathrm{~mm}, y_{1}=100 \mathrm{~mm}
\end{aligned}
$$

Area -(2) Quarea circle

$$
\begin{aligned}
& A_{2}=\frac{\pi r^{2}}{4}=17671^{46} \mathrm{~m}^{2} \\
& x_{2}=\frac{4 R}{3 \pi}=63.66 \mathrm{~mm} \\
& y_{2}=\frac{4 R}{3 \pi}=63.66 \mathrm{~mm}
\end{aligned}
$$

Area-(3) Right e angle Triangle

$$
\begin{aligned}
& A_{3}=\frac{1}{2} b h=\frac{1}{2} \times 150 \times 150=11250 \mathrm{~mm}^{2} \\
& x_{3}=200-\frac{b}{3}=200-\frac{150}{3}=150 \mathrm{~mm}\left\{50+\left(150-\frac{b}{3}\right)\right\} \\
& y_{3}=50+150-\frac{150}{3}=150 \mathrm{~mm} \\
& \bar{x}=\frac{A_{1} x_{1}-A_{2} x_{2}-A_{3} x_{3}}{3 A_{1}-A_{2}-A_{3}}=\frac{1.1875 \times 10^{6}}{68921.46}=107.189 \mathrm{~m} \\
& \bar{Y}=\frac{A_{1} y_{1}-A_{2} y_{2}-A_{3} y_{3}}{A_{1}-A_{2}-A_{3}}=\frac{1.1875 \times 10^{6}}{11078.54}=107.189 \mathrm{~mm}
\end{aligned}
$$

Pa,..tle't axis 16icymom:
Mormene \% montio \% athan amon witict is $1 f 1$

D $\%$ roomene $\%$ inentia abmel confroidal ois afid prbderes

 Perpondiculer omis Thoorsorn/telar thoment op lnontia: Morrone \& lnetio akout an axie is to the plane it an araz is knewin as pelas rromorn $\%$ inontio. Is is doninted by Tr2. Horo z axis iv Ji lo both controidal repuis and y-aris and pasing ehrough the corcto.

$$
I_{p}=I_{z}=T, 1,19
$$

The above ogn is called ay. Lir akis thoorom.
M.I about an $1 \cdot r$ areis $=$ Surn y it 1 abowe ary buo Ir axis thwough tho seme point lifing the same plane.

1. Calculate moment of horta \% L Section about horizontal and vortical axis passing thou ugh contridel Alow find the radius of gyration about control axis.

S. No	Section	Area $\left(\mathrm{cm}^{2}\right)$	\bar{x}	\bar{y}	$A \bar{x}$	$A \bar{y}$
1.	Rectangle	7.5×2	$7.5 / 2$	$2 / 2$	56.25	15
2.	Rectangle	8×2	$2 / 2$	$2+\frac{8}{2}$	16.00	96
				$\frac{72.25}{111}$	1	

$$
\bar{x}=2.33 \mathrm{~cm}, \quad \bar{y}=3.58 \mathrm{~cm}
$$

$$
k_{x x}=\sqrt{\frac{I_{x x}}{\sum A}}=3.026 \mathrm{~cm} ; k_{y y}=\sqrt{\frac{I_{y y}}{\sum A}}=2.08 \mathrm{~cm}
$$

Q. Determine the moment of Inatio and radius of gyrating of T Section about centridal y axis.

$$
\overline{x_{1}}=10 \mathrm{~cm}
$$

$$
\begin{aligned}
& \overline{x_{1}}=10 \mathrm{~cm} \\
& \bar{x}=10 \mathrm{~cm} \text { (symentio }
\end{aligned}
$$

$$
x_{2}=10 \mathrm{~cm}
$$

Answers:

$$
\begin{aligned}
& \bar{x}=\frac{\sum A \bar{x}}{\sum A}=10 \mathrm{~cm}^{\sum A} \\
& I_{4 y}=2730.667 \mathrm{~cm}^{4}
\end{aligned}
$$

Radius of gyration about y axis, $k=\frac{I 4 y}{\sum A}$

$$
\begin{aligned}
= & 4.168 \mathrm{~cm} \\
& =41.68 \mathrm{~mm}
\end{aligned}
$$

Compute the second moment of area of the plane swiface shown in fig, about is horizontal controidal axe
Solo:
The section involves:

1. a square (t), 2. a semicircle (t), 3ctriagle (t)

$$
\begin{aligned}
& A_{1}=36 \mathrm{~cm}^{2} \\
& A_{2}=\frac{\pi \times 3^{2}}{2}=14 \cdot 137 \mathrm{~cm}^{2} \\
& A_{3}=\frac{1}{2} b h=\frac{1}{2}(6)(3)=9 \mathrm{~cm}^{2}
\end{aligned}
$$

Then, centres if individual. areas are Calculated from the base as follows:

$$
\begin{aligned}
& y_{1}=3 \mathrm{~cm} \\
& y_{2}=6+\frac{4(3)}{3 \pi}=7.27 \mathrm{~cm} \\
& y_{3}=\frac{h}{3}=1 \mathrm{~cm} . \\
& \bar{y}=\frac{A_{1} y_{1}+A_{2} y_{2}-A_{3} y_{3}}{\sum A}=\frac{36(3)+14.137(7.27)-9(1)}{36+14.137-9}
\end{aligned}
$$

$\bar{Y}=4 \cdot 960 \mathrm{~cm}$ from the base.

$$
\begin{aligned}
& d x_{1}=y_{1}-\bar{y}=-1.906 \mathrm{~cm} \\
& d x_{2}=y_{2}-\bar{y}=2.364 \mathrm{~cm} \\
& d x_{3}=y_{3}-\bar{y}=-3.906 \mathrm{~cm} \\
& I_{x x}=\left[I_{x \times 9}+A\left(d x_{1}\right)^{2}\right]+\left[I_{x \times g^{+}}+A_{2}\left(d x_{2}\right)^{2}\right]-\left[I_{x \times g^{2}}+A_{3}\left(d x_{3}\right)^{2}\right] \\
&=\left[\frac{6 \times 6^{3}}{12}+(36) \times 1.906^{2}\right]+\left[0.11 R^{2}(3)^{4}+14.137(2.364)^{2}\right]-\left[\frac{6 \times 3^{3}}{36}+9(3.906)^{2}\right]^{3} / 36 \\
&=238.78+87.91-141.81 \\
& I_{x x}=184.8784 \mathrm{Cm}^{4} \\
& 207.77
\end{aligned}
$$

7. Determine the second Moment of area of the Section shown in fig about its base axis a a.
object is Symmetrical about y-axis.
So, $\bar{x}=\frac{300}{2}=150 \mathrm{~mm}$
Find \bar{y} :

$$
\begin{aligned}
& A_{1}=300 \times 100=30000 \mathrm{~mm}^{2} \\
& A_{2}=\frac{\pi R^{2}}{2}=\frac{\pi(100)^{2}}{2}=15707.96 \mathrm{~A} \\
& A_{3}=\pi R^{2}=78.53 .98 \mathrm{~mm}^{2} \\
& \bar{y}_{1}=\frac{100}{2}=50 \mathrm{~mm} ; \bar{y}_{2}=100+\frac{4(100)}{3 \pi}=142.44 \mathrm{~mm} ; y_{3}=50+\frac{100}{2}=1 \\
& \bar{y}=\frac{(30000 \times 50)+(15707.96 \times 142.44)}{30000+15707.967853 .98 \times 100)}=77.98 \mathrm{~m} \\
&
\end{aligned}
$$

From $11 l$ axis theorem, $I_{A A}=I_{x x}+\sum A(\text { dist })^{2} ;$ dist $=\bar{y}$

$$
\begin{aligned}
I_{A A} & =116.038 \times 10^{6}+\left(37853.98 \times 77.98^{2}\right) \\
= & 346.223 \times 10^{6} \mathrm{mn}^{4} \\
& 314.49 \times 10^{6}
\end{aligned}
$$

Part-1 Friction and its Applications
Defivitan:
Friction is the contact resistance developed betaucen the contact surfaces, when one of the body moves or tends to move over the other. It aburays opposes the motion or bends to move the body.

Angle of friction: (\$):-
The angle ϕ is called angle of friction which is defined as the angle betuken the normal force (N) and the frictional resultant (R). " ϕ ' depends on the nature \% two surfaces in contact.
Co-esficient of friction (μ) :-
The ratio between frictional force (f) and the normal fore (N) is called coefficient $o f$ friction (μ).

$$
\tan \phi=\frac{f}{N}=\mu \Rightarrow F=\mu N
$$

It depends on the nature of the material surface.
(1) A block of lo kg is kepi on a horizontal plane. Find the force required to cause motion, if the applied, is 111 to tie plane. Take the coesiciento fraser is 0.25

Sol-
Apply equilibrium conditions,

$$
\begin{aligned}
\Sigma F_{y}=0 \cdots \quad N & =98.1 \mathrm{~N} \\
\sum F_{x}=0 \cdots & =f \\
& =\mu \mathrm{N} \\
& =0.25 \times 98-1 \\
P & =24.525 \mathrm{~N}
\end{aligned}
$$

(2) A black q 10 kg is kept on a horizontal plane. Find the force required to cause motion, it the applied force is 15° with the horizontal plane. Take the coefficient of friction is 0.25 .
Sols:- Apply equilibrium Condos,

$$
\begin{gather*}
\sum F_{y}=0, \quad N+P \sin 15=98.1 N \\
N=-P \sin 15+98.1 \\
\sum F_{x}=0, \quad f=P \cos 15 \\
P \cos 15=\mu \mathrm{N} \\
P \cos 15=0.25(98.1-P \sin \theta) \quad[\text { Neg } 10] \\
P \cos 15+(0.25 \times P \sin 15)=0.25 \times 98.1 \\
P[\cos 15+0.25 \sin 15]=0.25 \times 98.1 \\
P=23.796 \mathrm{~N}
\end{gather*}
$$

3. A body of weight 10 kg is placed on a rough inclined plans, which is 20° with horizontal. What is that minimum force noquinel to raise the work if tho applied force is 112 to the plane. The confficone of friction $\mu=0.2 s$ Ara equilibrium condos,

$$
\begin{array}{rl}
\sum F_{y}=0 & N
\end{array} \quad=98.1 \sin 70 \quad 10.1838 \mathrm{~N}
$$

$\sum F_{x}=0$.

$$
\begin{aligned}
& P=f+98.1 \cos 70 \\
& P=(0.25 \times 92.1838)+98.1 \cos 70^{\circ} \\
& P=56.598 \mathrm{~N}
\end{aligned}
$$

(5) An effort of 200 N is required to just move a
*. Certain body up on an inclined plane of 15°, the force is acting parallel to plane.

If the plane angle $\theta=20^{\circ}$, the effort required again 11 l to plane is found to be 230 N . Find weight of the body and coefficient of friction. $W \cos 75$
7. Black B rest on block $A=14 \mathrm{~kg}$ and is attached by a horizontal rope $C D$ to the wall as shown in fig. What force P is necessary to cause motion of A to stack. Take weight of $B=9 \mathrm{~kg}, \mu$ beawken block and floor is $1 / 3$ and between blocks 1/4.

Applying equilibrium Cordwain in block 'B':

$$
\begin{aligned}
\sum F_{4}=0 \cdots N_{B} & =w_{B}=88.29 \mathrm{~N} \\
\sum F_{x}=0 \cdots f_{B} & =\mu N_{B} \\
& =0.25 \times 88.29 \\
f_{1} & =22.0725 \mathrm{~N}
\end{aligned}
$$

Now Block A,

$$
\begin{aligned}
\sum F_{y}=0 \cdots \quad & N_{A}+P \sin 45=88.29+137.34 \\
& N_{A}=225.63-P \sin 45 \\
& f_{A}=\mu_{A} N_{A} \\
& f_{A}=0.3333[225.63-P \sin 45]
\end{aligned}
$$

$$
\begin{gathered}
\sum r_{x}=0 \ldots \cos 45=f_{1}+f_{2} \\
P \cos 45=22.0725+\{0.3333[225.63-P \sin 45]\} \\
P \cos 45+0.2356 P=097.2749 \\
P(0.9427)=97.2749 \\
P=103.1868 \mathrm{~N}
\end{gathered}
$$

12. What is the least value of p to cause the motion to impend? Assume coefficient of friction to be 0.20.

$$
\begin{gather*}
f_{1}=\mu_{N} N_{1}(70 \times 9.81) \cos 60^{\circ}=68.67 \mathrm{~N} \\
f_{1}=0.2 \times T=f_{1}+(70 \times 9.81) \sin 60 \\
T=663.3696 \mathrm{~N}-1
\end{gather*}
$$

$$
\Sigma f_{x}=0 \ldots . \quad T=f_{1}+(70 \times 9.81) \sin 60
$$

$$
\begin{align*}
& \text { Consider } 45 \mathrm{~kg} \text { block:- } \\
& \sum f_{y}=0 \ldots N_{f_{2}}=\mu N_{2}=-p \sin \theta+(45 \times 9.81) \\
& f_{2}=0.2[-p \sin \theta+441.45] \\
& f_{2}=88.29-0.2 p \sin \theta \\
& \sum F_{x}=0 \cdots P \cos \theta=T+f_{2} \\
& \text { Subs ann (1) \& (2) } \\
& p \cos \theta=663.369+88.29-0.2 p \sin \theta \\
& p \cos \theta+0.2 P \sin \theta=751.659 \\
& P[\cos \theta+0.2 \sin \theta]=751.659 \\
& P=\frac{751.659}{\cos \theta+0.2 \sin \theta} \tag{50}
\end{align*}
$$

When ' P ' is least, the denominator $[\cos \theta+0.2 \sin \theta]$ must be maximum.
(.e.)

$$
\begin{aligned}
& \frac{d}{d \theta}[\cos \theta+0.2 \sin \theta]=0 \\
&-\sin \theta+0.2 \cos \theta=0 \\
& 0.2=\frac{\sin \theta}{\cos \theta} \\
& 0.2=\tan \theta \\
& \theta=11.3099^{\circ}
\end{aligned}
$$

Subs in eqn(3), $P=737.0628 \mathrm{~N}$

Part -2 Bale Friction
The frictional force exeread between the bole and the pulley contact surface is known as bole fricitr

Slack side
The various types of bole ane
i) Flat belt
ii) veBele
iii) Rope.

The ratio of tight side tansion to slack side tension,

$$
\frac{T_{1}}{T_{2}}=e^{\mu \theta}
$$

Where, μ-coefficient of friction between the bolo and contact surface.
Always $T_{1}>T_{2}$.
Flat belts are used, when the centre. distance between the machinery is too high as in the case of rice mills, stone crushers ot When the centre distance between driving and driven shaft is loss as in the case \% Lathes, grinders, and pumps, V-belts are used with the help of grooved pulley.

Numerical forblenzs:
(A) Thee turns of rape around a hororenten) perse will dod a sookg mass whir a pull of 30 N. Setcimank tic co-byiciont of fiction botwoonta. lope ard the post.

$$
\begin{aligned}
& \ln \left(T_{1} / T_{2}\right)=\mu \theta \\
& u=\frac{\ln \left(\frac{300 \times 9.81}{30}\right)}{6 \pi} \\
& u=0.24329 .
\end{aligned}
$$

*. A bole embraces an angle of 200° over the surface of a pulley of 500 mm diameter. If the tight side torsion of the belt is 2.5 kN , find out the slack side torsion of the belt. $\mu=0$. Seth- Angle \% Contact $\theta=\frac{\pi}{180} \times 200^{\circ}=3.49 \mathrm{rad}$.

$$
\begin{aligned}
& \frac{T_{1}}{T_{2}}=e^{\mu \theta}=e^{0.3 \times 3.49} \\
& \frac{2.5}{T_{2}}=2.84965 \\
& T_{2}=0.8773 \mathrm{kN}
\end{aligned}
$$

Qi t Wye is whexpeof thane and a bala times cromenal a Cycinares as shawn in fig thownmbe
 that is sequined to suggoer a 1 kN wosedae. "Pho Con officious of friction is u ole. soto.

Ascent the toke inquired as slack side caution 1 , (nim)

$$
\begin{aligned}
& \frac{T_{1}}{T_{2}} e^{100} \\
& \frac{1000}{T_{2}} e^{006 \times 7 \pi} \\
& T_{2}=4.0958 \mathrm{~N}
\end{aligned}
$$

(0)

$$
3 \% \text { tuns } \Rightarrow \frac{-1}{180} \times(3.5 \times 360)
$$

$7 i 1 \mathrm{rad}$.
9. A cord is alcachod to a blot of 5okg mass, the block is positioned on a 20° inclined 1_{1} as shown in The other end of the cord is supporting a cylinder If the co-afficiont of friction between block and inclined 10^{4} is 0.2 and Cones friction betwes cord and the Cylindrical Support surface is 0.3 , determine the range of mass of cylinder for which the system is in equilibrium.
10. A Singe bole (Band) is used to brake a rotating wheel. The bole AB attached to a laver ABe hinged at B. The $\mu=0.5$. Find the braking moment M exerted by a vertical weight walloon

soon:-
Arsine T. \& Th be the tight side and slack side tensions shown in fig.

Angle of lap $=180+45^{\circ}=225^{\circ}=\frac{\pi}{180} \times 225=3.93 \mathrm{rad}$. $\mu=0.5$,
from pulley,

$$
\begin{align*}
\frac{T_{1}}{T_{2}} & =e^{\mu \theta} \\
& =e^{0.5 \times 3.93} \\
\frac{T_{1}}{T_{2}} & =7.12418 \tag{1}
\end{align*}
$$

Consider leva,
Takung moment about ' B ' and equating it to zero.

$$
\begin{aligned}
+\left(T_{1} \times 25\right) & =(100 \times 50)=0 \\
T_{1} & =200 \mathrm{~N} \\
T_{2} & =28.073 \mathrm{~N} \quad[\therefore \operatorname{egn}(1)]
\end{aligned}
$$

Braking torque (or) moment. = applied moment.

$$
\begin{aligned}
M & =\left(T_{1}-T_{2}\right) r_{D} \\
M & =42.981 N_{m}
\end{aligned}
$$

13. The "proat y a brake dom is controllod by ae bole intlachoof to tho Caver AD as Chowm in fig. 1 form $P 2=N$ is applied to the lowner A. Stronmine the magniduale of tho coupte appliod to the dium, to the cerefficiont of fretion botwaan tia bole and ohem is e.2e, The orvern is motating ciw al a constant Speved

Consider brake drum,
contace angle $\theta=\pi \mathrm{rad}$.

$$
\begin{align*}
& \frac{T_{1}}{T_{2}}=e^{\mu \theta}=e^{0.25(\pi)} \\
& \frac{T_{1}}{T_{2}}=2.19328 \\
& T_{1}=2.19328 T_{2} \tag{1}
\end{align*}
$$

Considar laver AD,
Tahis moment aboust hije ' C '. and equation it 20.20'

$$
\begin{align*}
& \sum M_{C}=0 . \\
& T_{1} \times 40+(25 \times 280)-\left(T_{2} \times 120\right)=0 \\
& 40 T_{1}-120 T_{2}=-7000 \\
& T_{1}-3 T_{2}=-175+(1+1) \\
& T_{1}=3 T_{2}-175 \quad \text { (2) } \tag{2}
\end{align*}
$$

Solur eqn (1) \& (2),
(1) - (2)

$$
\begin{aligned}
& 3 T_{2}-175=2.19328 T_{2} \\
& T_{2}(3-2.19328)=175 \\
& T_{2}=216.9278 \mathrm{~N} \\
& T_{1}=475.783 \mathrm{~N}
\end{aligned}
$$

Moment applied to the drum,

$$
\begin{aligned}
M & =\left(T_{1}-T_{2}\right) r_{D} \\
& =(475.783-216.9278) \times 0.08 \\
M & =20.708 \mathrm{Nm}
\end{aligned}
$$

Wheel Friction, Rolling Resistance
hen a whet (iv) sphere roll on sound wide che action is horizontal $\mid W$ res P these is a depomation the surface upon which whee d or sphere roll, using the contact seven wheal and grows , tares place ever. vervain area.
1-Resultant frise
\therefore - co-officient of
votlizg resistance in mm "

The value \% $\left.\begin{array}{l}\text { co-egsicient } 6 \\ \text { rollin resistance }\end{array}\right\} a=0.25 \mathrm{~m}$ for steed whee on steel rail.

Consider the above diagram, and taking moment about A. and equating it to zero for equilibrium $E M=0 \Rightarrow \quad W r \sin \phi=P_{A} \times r$

1. A steel of 800 mm diameter rolls on a horizontal stael rail. It carries a load of 600 kN . The coefficient of rolling resistance is 0.25 mm . What is the force P required to roll the wheel along the rail.

$$
\begin{aligned}
\sum M_{A} & =0 \\
-P \times 400 & =600 \times a=0 \\
400 P & =600(0.25) \\
P & =\frac{600(0.25)}{400} \\
P & =0.375 \mathrm{kN}
\end{aligned}
$$

2. Decermine horizontal force p required to move an automobile \% mass 3000 kg along a horizontal rocs at constant speed. The diameter of each ty pe is 1000 mm . Assuming coefficient of rolling resistance to be 2 mm and neglect all other forms of fried

$$
\begin{gathered}
\sum_{A}=0, \quad-P \times 500 \frac{1}{T}(3000 \times 9.81) \times Q=0 \\
P=117.72 \mathrm{~N}
\end{gathered}
$$

3. A sphere of 200 mm radices carries a load of 10 k If a horizontal force 100 N is necessary to move in a horizontal surface, determine the coefficient of working resistance.

$$
\begin{aligned}
& \sum M_{A}=0, \\
& \left(10 \times 10^{3}\right) \times a=-(100 \times r)=0 \\
& r=200 \mathrm{~mm} . \\
& a=2 \mathrm{~mm}
\end{aligned}
$$

4. A cylinder having a radius of 100 mm rolls down a Slope I in 50. Determine the conffricient b) rolling resistance ' a ' 8 the cylinder.

Given:-
The cylinder rolls down a slope 1 in 50.
It means, $\tan \theta=\frac{1}{50}$

$$
\begin{aligned}
& \sum M_{A}=0, \\
& -(m g \cos \theta \times a)+(m g \sin \theta)(r)=0 \\
& m g \cos \theta \times a
\end{aligned}=m g \sin \theta \times r .
$$

Unit 5
Dynamics of Particles
Dynamics Par-17kinematics of Particle (Translation)
Eyramics is the branch of mechanics, which deals With the motion of particles or bodies under the action of forces. Dyramics is divided into two parts.
i) Kinernatics, ii) Kinetics

Kinematics is the study of motion q bodies without reference to the force which cause the motion It is the study of "geometry of morion". It is used to velate displacement, velocity, acceleration and time without reference to the forces causing the motion-

Kinetics is the study of bodies with reference to the force which cause the motion. It is the study q the relationship between the forces acting on a body, the mass of the body and the motion of the body.
Types of Motion:
Motion:
A body or a particle is said to be in motion, if it Changes the position with respect to a reference point.
Translation ton Rectilinear Motion:
A type q motion is defined by the path traversed by it. (It the path is straight line, the motion is called the rectilinear motion or Translation.)

Curvilinaa Motion:
If the pate is a curved line, the motion is called Gurvilinaas motion.
Pure rotation:
If the path is a circle, then the motion is called pure rotation.

F General Plane Motion:
If a body having both translation and rotation is Sicid to be in general plane motion.

Rectilinear Motion:
Displacement:
The shortest distance bet. the initial \& final position is called displacement.
Speed.
Speed rate of change of distance irrespective of th direction q motion of the body. Thus the speed may be' defined of the magnitude of the velocity.
Velocity:
The velocity is defiried thus the rate of change of displace l

$$
v=\frac{d s}{d t} \mathrm{~m} / \mathrm{s}
$$

Acceleration:
Acceleration is the rate of Change of velocity and it is measured in $\mathrm{m} / \mathrm{s}^{2}$. The tee acceleration is ' Simply called as acceleration. Wore the velocity increases w.r.to tins' Negative acceleration is called deceleration where the Volocien decreases with respect to time.

Equation of motion for roctilupar motion-conseane acceleration Albrizental motion

$$
\begin{aligned}
& V=u+a t \\
& \dot{F}=u+\frac{1}{2} a^{2} \\
& V^{2}=u^{2}+2 a_{3}
\end{aligned}
$$

Where, $\downarrow U \rightarrow$ bo the initial velocity, m / s
$V \rightarrow$ be the final velocity, m / s
$t \rightarrow$ time, so e
$a \rightarrow$ acceleration, $\mathrm{m} / \mathrm{s}^{2}$
$S \rightarrow$ displacement, m.
(i) Vertical Motion: Motion under Gravitational force
a) The downward motion equations are:-

$$
\begin{aligned}
& v=u+g t \\
& h=u t+\frac{1}{2} g t^{2} \\
& v^{2}=u^{2}+2 g h
\end{aligned}
$$

b) the upward motion equations are:-

$$
\begin{aligned}
& v=u-g t \\
& h=u t-\frac{1}{2} g t^{2} \\
& v^{2}=u^{2}-2 g h
\end{aligned}
$$

Where, $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$ for downward motion

$$
g=-9.81 \mathrm{~m} / \mathrm{s}^{2} \text { for upward motion }
$$

Basic equations:
$V=d s / d t ; a=d v / d t ; \quad V d v=$ ads [should be used for variable acceleration

Numerical Problems:

1. A motion q a particle is described by an equation, diplacement $s=5 t^{2}-7 t+2$. Find,
a) displacement, velocity, acceleration, when ' t ' $=2 \mathrm{sec}$
b) Minimum displacement and corresponding velocity and acceleration. Take ' s ' in ' m '.
solon:-
Displacement $S=5 t^{2}-7 t+2$
Digerentiating we. to, $t, v=d s / d t=10 t-7$
Differentiating w.r. to $t, a=\frac{d y}{d t}=10$.
a) Displacement when $t=2 \sec \rightarrow S_{t=2}=5(2)^{2}-7(2)+2$

$$
=8 \mathrm{~m}
$$

The velocity when $t=2 \mathrm{sec}, v_{t=2}=10(2)-7$

$$
=13 \mathrm{~m} / \mathrm{s} .
$$

Accelaration is constant, $a=10 \mathrm{~m} / \mathrm{s}^{2}$ all the tina
b) for minimum displacement, the first derivative

$$
\begin{aligned}
& \frac{d s}{d t} \text { w.) } v=0 \\
& 10 t-7=0 \\
& t=\frac{7}{10} \mathrm{sec}
\end{aligned}
$$

\therefore Corresponding displacement, $S=5\left(\frac{7}{10}\right)^{2}-7\left(\frac{7}{10}\right)+2$

$$
=-0.45 \mathrm{~m}
$$

Acceleration $a=10 \mathrm{~m} / \mathrm{s}^{2}$ always.
2. A motion 2 a particle is defined by
$S=2 x^{3}-6 t^{2}+15$ where s in meter and t is in soc. Dotarmine position and acceleration when.
i) velocity is zero ii) Velocity is minimum
sols:-

$$
\begin{aligned}
& s=2 t^{3}-6 t^{2}+15 \\
& v=\frac{d s}{d t}=6 t^{2}-12 t \\
& a=\frac{d t}{d t}=12 t-12
\end{aligned}
$$

i) When velocity is zero.

$$
\begin{aligned}
& v= {\left[6 t^{2}-12 t\right]=0 } \\
& 6 t(t-2)=0 \\
& t \neq 0 \quad \text { or } t=2 \mathrm{sec}
\end{aligned}
$$

\therefore Displacement, $\quad S=2\left(2^{3}\right)-6\left(2^{2}\right)+15=7 \mathrm{~m}$.
Acceleration, $a=12(2)-12=12 \mathrm{~m} / \mathrm{s}^{2}$.
ii) When the velocity is minimum, the first derivative

$$
\begin{aligned}
& \frac{d v}{d t}=a=\text { zero } \\
& 12 t-12=0 \\
& t=1 \sec
\end{aligned}
$$

\therefore Displacement $S=2(1)^{2}-G(1)^{2}+15=11 \mathrm{~m}$.
Velocity

$$
\begin{aligned}
v & =6(1)^{2}-12(1) \\
& =-6 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

4. A car moves in a straight line for a Short time, its velocity is defined as $v=3 t^{2}+2 t "$ Determine ils position and acceleration at $t=3$ so r Also assume that initial displacement is noghigitet Solo: Given $\quad v=3 t^{2}+2 t ; \quad a=6 t+2=0$ Dyferentiato w. r to time, then acceleration, $a=6 t+1$. take $\frac{d s}{d t} v=3 t^{2}+2 t$

$$
d s=\left(3 t^{2}+2 t\right) d t
$$

meegraeing, $S=t^{3}+t^{2}+c$
When, $t=0, S=0 \quad[$ Given $]$

$$
\begin{align*}
& \therefore C=0 \\
& S=t^{3}+t^{2} \tag{2}
\end{align*}
$$

© \Rightarrow. Acceleration when $t=3 \mathrm{sec}$,
$a_{t=3}=6(3)+2$

$$
=20 \mathrm{~m} / \mathrm{s}^{2}
$$

(2) \Rightarrow Displacement ae $t=3 \mathrm{sec}, S_{t=3}=(3)^{3}+(3)^{2}$

$$
=36 \mathrm{~m} .
$$

5. The velocity of a particle along x axis is gn_{n} by $v=5 s^{3 / 2}$ where s is in ' m ', v is in m / s, Determi' the acceleration, when $\mathrm{S}=2 \mathrm{~m}$.

Given:-

$$
\begin{aligned}
& v=5 s^{3 / 2} \\
& \frac{d v}{d t}=a=\frac{3}{2}(5) s^{1 / 2} \cdot \frac{d s}{d t} \\
& a=5\left(\frac{3}{2}\right) s^{1 / 2} \cdot v=5\left(\frac{3}{2}\right) 5^{1 / 2} \times 55^{3 / 2}=\frac{75}{2}
\end{aligned}
$$

When, $s=2 \mathrm{~m} ; \quad a=\frac{75}{2}\left(2^{2}\right)$

$$
a=150 \mathrm{~m} / \mathrm{s}^{2} \mid \text { at } \$ 0=2 \mathrm{~m}
$$

8. The spoed of a particle is given by $v=2 t^{3}+5 t^{2}$. what distance does it tranal whilo ies speod incrases from $7 \mathrm{~m} / \mathrm{s}$ to $99 \mathrm{~m} / \mathrm{s}$?
Givan: $V=2 t^{3}+5 t^{2}$

$$
\begin{align*}
V=\frac{d s}{d t} & =2 t^{3}+5 t^{2} \tag{1}\\
d s & =\left(2 t^{3}+5 t^{2}\right) d t \\
\int d s & =\int\left(2 t^{3}+5 t^{2}\right) d t \\
& =\int^{\prime} \text { when } v=99 \mathrm{~m} / \mathrm{s} \\
S & =\left(2 t^{3}+5 t^{2}\right) d t
\end{align*}
$$

' t ' when $v=7 \mathrm{~m} / \mathrm{s}$
Fonding timis out the sime limits:
When $v=7 \mathrm{~m} / \mathrm{s}$
eqn (1) becomes, $7=2 t^{3}+5 t^{2}$

$$
\begin{aligned}
& 2 t^{3}+5 t^{2}-7=0 \\
& t=1 \mathrm{sec}
\end{aligned}
$$

When, $v=99 \mathrm{~m} / \mathrm{s}$
an (1) becomes, $99=2 t^{3}+5 t^{2}$

$$
\begin{aligned}
& 2 t^{3}+5 t^{2}-99=0 \\
& t=3 \mathrm{sec} .
\end{aligned}
$$

eqn (2) becomes,

$$
\begin{aligned}
S & =\int_{1}^{3}\left(2 t^{3}+5 t^{2}\right) d t=\left[\frac{2 t^{4}}{4}+\frac{5 t^{3}}{3}\right]_{1}^{3} \\
& =\left[\frac{3^{4}}{2}+5 \frac{(3)^{3}}{3}\right]-\left[\frac{1}{2}+\frac{5}{3}\right]=83.333 \mathrm{~m}
\end{aligned}
$$

9. A particle starting from rest, moves and its acceleration is given by $a=50-36 t^{2} \mathrm{~m} / \mathrm{s}^{2}$ Determine the velocity of the particle when it has travelled 52 m .
Sin: Given $a=50-36 t^{2}$

$$
\begin{align*}
& \frac{d v}{d t}=50-36 t^{2} \tag{1}\\
& d v=\left(50-36 t^{2}\right) d t
\end{align*}
$$

integrating, $v=50 t-(36) \frac{t^{3}}{3}+C$, et de
when, $t=0, v=0 \quad[$ initial position]conds,
So, $\quad C_{1}=0$
and, $\frac{d s}{d t}=50 t-12 t^{3}$.

$$
d s=\left(50 t-12 t^{3}\right) d t
$$

Integratiy, $S=\frac{50 t^{2}}{2}-12 \frac{t^{4}}{4}+C_{2}$

$$
=25 t^{2}-3 t^{4}+c_{2}
$$

when $t=0, s=0 \therefore C_{2}=0$.

$$
\begin{equation*}
S=25 t^{2}-3 t^{4} \tag{3}
\end{equation*}
$$

${ }_{0}$ Given, $s=52 \mathrm{~m} .$. findiy out ' t '.
eqn(3) beciones, $52=25 t^{2}-3 t^{4}$
put $t^{2}=x$ in egn (4)

$$
52=25 x-3 x^{2}
$$

$$
A x^{2}+B x+c=0
$$

Solving, $\quad x_{\phi}=4,4.3333$

$$
t= \pm \sqrt{4} \quad \text { and } \pm \sqrt{4.3333}
$$

$t=2.0816$ and $2 \sec$.
When, $t=2 \sec \cdots \quad v=50(2)-12(2)^{3}$

$$
=4 \mathrm{~m} / \mathrm{s} .
$$

When, $t=2.0816 \mathrm{sec} \cdots \cdot v=50(2.0816)-12(2.0816)^{3}$

$$
=-4.163 \mathrm{~m} / \mathrm{s}
$$

10. An automobile travels 360 m in 30 s while being accelerated at a constant rate of $0.5 \mathrm{~m} / \mathrm{s}^{2}$. Determine,
a) Initial Velocity
b) Final veloiing c) distance travelled during the first 10 sec .

Ste -
1 Initial velocity:-
Displacement $S=u t+\frac{1}{2} a t^{2}$

$$
\begin{aligned}
& 360=u(30)+\frac{1}{2}(c .5)(30)^{2} \\
& u=4.5 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
& 360 \mathrm{~m} \\
& t=30 \mathrm{~s} \\
& a=0.5 \mathrm{~m} / \mathrm{s}^{2} \\
& s_{t=10}=?
\end{aligned}
$$

2Firal velocity:

$$
\begin{aligned}
V & =u+a t \\
& =4.5+(0.5)(30) \\
v & =19.5 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

3. $S_{t=10}=$?

$$
\begin{aligned}
S & =u t+\frac{1}{2} a t^{2} \\
& =4: 5^{(10)}+\frac{1}{2}(0.5)\left(10^{2}\right) \\
S_{t=10} & =70 \mathrm{~m}
\end{aligned}
$$

12. A dquve $\%$ a ar lavolling al $72 \mathrm{~km} / \mathrm{h}$ obasorno the laffie Sighe zetin abead of him twenning re The taffir Qighe is timed to romain red for 20 bofure it twues growe. If the motorest wishas to pass tho lighe wutrout stopping to wait for it (1) twen g'eon, davernine, (i) tho raquired uniform accolotation 8 tero ran: (ii) the Speest with whe the metorist cmosos tha traftic light.

$$
\begin{aligned}
& u=\frac{72 \mathrm{~km} / \mathrm{h}}{u}=\frac{72 \times 1000}{u}=20 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Desplacomont $S=u t+\frac{1}{2} a^{2}$

$$
300=20 \times 20+\frac{1}{2}(a)(20)^{2}<\quad 300 \mathrm{~m} \rightarrow 2=12 / 3.6=20 \mathrm{~m} / \mathrm{s} \rightarrow
$$

$$
a=-0.5 \mathrm{~m} / \mathrm{s}^{2} \quad \text { (Daceleration). }
$$

Final velocity, $V=u+a t$

$$
\begin{aligned}
& =20+(0.5 \times 20) \\
V & =10 \mathrm{~m} / \mathrm{s} \\
& =\frac{10 \times 60 \times 60}{1000}=\frac{36000}{1000} \\
V & =36 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

Answors:
i) uniform decelaration is $0.5 \mathrm{~m} / \mathrm{s}^{2}$
$\left.\begin{array}{r}\text { ii) Speed at which motorist cross the } \\ \text { traffic. light }\end{array}\right\}=36 \mathrm{kmph}$.
13. A stone is dropped into a well. The sound of the splash is heard 3.63 seconds later. How for below the ground is the surfaces of the water? Assume the y.y.in velocity of serend as $331 \mathrm{~m} / \mathrm{s}$. Let $t_{1} \rightarrow$ Time ragi to roach the simpace of war $t_{1}+t_{2}=3-63 \mathrm{sec} ; u=331 \mathrm{~m} / \mathrm{s} \quad t_{2} \rightarrow$ Time mipactake by sind Level
Consider Stone:

$$
\begin{aligned}
& u=\text { initial velocity }=0 \\
& a=+9
\end{aligned}
$$

Displacement $=h$

$$
\begin{equation*}
h=\frac{k}{2} u t_{1}^{0}+\frac{1}{2} g t_{1}^{2} \tag{1}
\end{equation*}
$$

Consider Sound:
uniform velocity of sound, $u=331 \mathrm{~m} / \mathrm{s}$ (awn) $a=0$ or $g=0$. (:uniform velocity)
So, $h=u t_{2}+\frac{1}{2} \hat{p}^{t_{2}^{2}}$

$$
\begin{align*}
& h=331 \times t_{2} \tag{2}\\
& t_{1}+t_{2}=3.63 \Rightarrow t_{2}=3.63-t_{1}
\end{align*}
$$

Equating (1) \& (2)

$$
\begin{aligned}
& \frac{1}{g} g t_{1}^{2}=331 \times t_{2} \\
& \frac{1}{2}(9.81) t_{1}^{2}=331 \times\left(3.63-t_{1}\right) \\
& 4.905 t_{1}^{2}+331 t_{1}-1201.53=0 \\
& r t_{1}=3.45 \text { sec or }-70.9
\end{aligned}
$$

$$
\begin{aligned}
\therefore h & =\frac{1}{2} g t_{1}^{2} \\
h & =\frac{1}{2}(9.81) \times 3.45^{2} \\
h & =58.4935 \mathrm{~m}
\end{aligned}
$$

The surface of water is 58.4935 m belour the ground.
15. A particle under constant deceleration is moving in 9 Straight line and covers a distance of 20 m in the first 2 seconds and 40 m in the next 5 se Calculate the distance it covers in the Sulesequent 3 sec and total distance travelle by the particlebefore it comes to rest.

Let the initial velocity is ' 1 ' awol be the deceleration is ' a '.

Phase 1:
Here, $t=2 \mathrm{sec}, \quad s=20 \mathrm{~m}$

$$
\begin{align*}
& s=u t+\frac{1}{2} a t^{2} \\
& 20=u(2)+\frac{1}{2}(a)\left(2^{2}\right) \\
& 20=2 u+2 a \\
& u+a=10 \tag{1}
\end{align*}
$$

Phase (1) \& (2):-
Here, $t=7 \mathrm{sec}, S=60 \mathrm{~m}$

$$
\begin{align*}
& 60=u(7)+\frac{1}{2}(a)\left(7^{2}\right) \\
& 60=7 u+24.5 a \\
& 7 u+24.5 a=60 \tag{2}
\end{align*}
$$

solving (1) \& (2)

$$
u=10.5714^{2} \mathrm{~m} / \mathrm{s}, \quad a=-0.5714 \mathrm{~m} / \mathrm{s}^{2}
$$

Consider phase (3):- here, $t=1050 c, u=10.5714 \mathrm{~m} ; a=-0.574$

- phase 3 distance $=$ up to phase 0 distance - up to phase (2 d distance

$$
\begin{aligned}
S_{3} & =\left\{10.57142 \times 10+\frac{1}{2}(-0.571428)\left(10^{2}\right)\right\}-(60) \\
S_{3} & =17.1428 \mathrm{~m} \\
V & =u+a t \\
v_{3} & =u+\text { at } \\
& =10.57142+(-0.571428)(10) \\
v_{3} & =4.85714 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Consider phase (4):
(Here, $\mathrm{U}_{4}=4.85714 \mathrm{~m} / \mathrm{s}$, there final velaig of v_{3} is the initial velacits of phases
because $V_{4}=0$

$$
\begin{aligned}
& a^{4}=-0.571428 \mathrm{~m} / \mathrm{s}^{2} \\
& v_{4}=u_{4}+a t_{4} \\
& 0=4.85714+(-0.571428)\left(t_{4}\right) \\
& t_{4}=8.5 \mathrm{sec} .
\end{aligned}
$$

The total time $=2+5+3+8.5=18.5 \mathrm{sec}$.
Total distance travelled, $S=10.57142 \times 18.5+$

$$
\begin{aligned}
& \frac{1}{2}(-0.571428) \times 18.5^{2} \\
& S=97.785 \mathrm{~m}
\end{aligned}
$$

16. A particle moving with an acceleration $10 \mathrm{~m} / \mathrm{s}^{2}$ 1 travels a distance of 50 m . during $5^{\text {th }} \sec$. Find iss Initial space.

Distance travelled in the $n^{\text {th }} \sec$ is $g n$ by

$$
\begin{aligned}
& S_{n}^{k}=u+\frac{a}{2}(2 n-1) \\
& S_{5}^{t h}=u+\frac{10}{2}(2(5)-1) \\
& 50=u+45 \\
& u=5 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

17. A body is moving with uniform acceleration and Covers the $20^{\circ} \mathrm{m}$ in $4^{\text {th }} \mathrm{sec}$ and 30 m in $8^{\text {th }} \mathrm{sec}$. Determine (i) the initial velocity of the body ii) acceleration of the bede iii) distance travelled during $10^{\text {th }}$
soln:
Distance covered in $n^{\text {th }} \sec , S_{n}^{t h}=u+\frac{a}{2}(2 n-1)$
Apply the given conditions,

$$
\begin{align*}
& 20=u+\frac{a}{2}(8-1) \\
& 20=u+7(a / 2) \tag{1}\\
& 30=u+15(a / 2) \tag{2}
\end{align*}
$$

(2) $-(1) \Rightarrow 10=8(a / 2)$

$$
a=2.5 \mathrm{~m} / \mathrm{s}^{2}, \text { Substitute in (1) }
$$

$$
\begin{aligned}
& 90=u+\left(7 \times \frac{2 \cdot}{2}\right) \\
& u=11.25 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Distance travelled during $10^{\text {th }}$ soc,

$$
\begin{aligned}
& S_{10}^{t h}=11.25+\frac{2.5}{2}[2(10)-1] \\
& S_{10}^{t h}=35 \mathrm{~m}
\end{aligned}
$$

18. A car accelerator uniformly from a ipod of 30 kmph to a speed $875 \mathrm{hm} / \mathrm{h}$ in 5 sec . Determine the acceleration of the Can and also the distance travelled during 5 soc .

$$
\begin{gathered}
s=? \\
u=\frac{30 \times 1000}{60 \times 60}=8.333 \mathrm{~m} / \mathrm{s} ; \quad v=\frac{75 \times 1000}{60 \times 60}=20.833 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

$$
\begin{aligned}
v & =u+a t \\
20.833 & =8.333+a(5) \\
a & =2.5 \mathrm{~m} / \mathrm{s}^{2} \\
S & =u t+\frac{1}{2} a t^{2} \\
& =8.333(5)+\frac{1}{2}(2.5)\left(5^{2}\right) \\
S & =72.915 \mathrm{~m}
\end{aligned}
$$

18. Two cars are travelling towards each other on a lane road at $16 \mathrm{~m} / \mathrm{s}$ and $12 \mathrm{~m} / \mathrm{s}$ resp. When 120 m apart, both drivers realize to apply brakes. The succeed in stopping simultaneously and just shore of Collision. Assuming constant deceleration of each car. Determine, a) time required for the cars to stop b) declaration of each car
c) distance travelled by each car.
consider car 'A':

$$
\begin{align*}
& S_{A}=16 t+\frac{1}{2} a_{A} t^{2} \\
& V_{A}=16+a_{A} t=0 \\
& -16
\end{align*}
$$

$$
S_{A}=16 t-\frac{16}{2 t} t^{2} ; \quad S_{A}=8 t
$$

Consider car ' B ':-

$$
\begin{align*}
& S_{B}=12 t+\frac{1}{2} a_{B} t^{2} \tag{2}\\
& v_{B}=12+a_{B} t=0 ; \quad a_{B}=\frac{-120}{t}, \text { subs in } \\
& S_{B}=12 t-\frac{12}{2 t} t^{2}
\end{align*}
$$

Total distance $=$ Displacement by $A+$ Displacement by 'A

$$
S_{B}=6 t
$$

$$
1200=S_{A}+S_{B}=8 t+6 t
$$

$$
t=\frac{120}{14}=\frac{8.571 \mathrm{sec}}{1}
$$

$$
\begin{aligned}
& t=\frac{120}{14}=\frac{8.511}{}=-1.4 \mathrm{~m} / \mathrm{s} . \quad\left[\therefore a_{B}=\frac{-12}{t}\right] \\
& a_{A}=\frac{-16}{t} \Rightarrow a_{A}=-1.8667 \mathrm{~m} / \mathrm{s}^{2} ; \quad a_{B}=-1.29 \mathrm{~m} \\
& S_{A}=68.571 \mathrm{~m} ; \quad S_{B}=51.429
\end{aligned}
$$

 Aowot. find the mieiz? vileily.

$$
\begin{aligned}
& \therefore 66(2,1)
\end{aligned}
$$

$$
\begin{aligned}
& i=(1+1)(\therefore 31) \\
& \omega=20 \cdot 605 \quad m / \therefore
\end{aligned}
$$

 high te the same teme arother stone is hacwor up fiom die giot of ke kanor wif a velocity o $05 \mathrm{~m} / \mathrm{s}$. te what distance yerom kis top and how mueh time aftet, the tuo seones moot each other.

Consider stone ' A ':

$$
\begin{align*}
& u=0, \quad a=9, \text { time }=t \\
& \therefore S_{A}=O(t)+\frac{1}{2} g t^{2}
\end{align*}
$$

Consider store ' B^{\prime} '.

$$
\begin{align*}
& u=25 \mathrm{~m} / \mathrm{s}, \quad a=-9, \quad \text { tine }=t \\
& S_{B}=25 t-\frac{1}{2} 9 t^{2} \tag{2}
\end{align*}
$$

From schematic sketch, $S_{A}+S_{B}=50$

$$
\begin{gathered}
\text { From } \begin{array}{r}
{\left[\frac{1}{2} g t^{2}\right)+\left[25 t-\frac{1}{2} g t^{2}\right]=50} \\
25 t=50 \\
t=2 \mathrm{sec} \\
\left.S_{A}=\frac{1}{2}(9.89) \times 2^{2} \quad \text { (From (1) }\right] \\
S_{A}=19.62 \mathrm{~m}
\end{array}
\end{gathered}
$$

26. A helicopter raises from ground with a constant acceleration of $1.2 \mathrm{~m} / \mathrm{s}^{2}$. After 4 seconds, a stone is thrown vertically up from the launching Pad What is the vital velocity of stone if the stone just touches the helicopter?

Soln:-
$h \rightarrow$ distance covered by both helicopter and stone. $t_{1} \rightarrow$ time taken by helicopter $t_{2} \rightarrow$ tine taken by stone $t_{1}=t_{2}+4$

$$
\begin{align*}
& v=\omega-q_{2} \\
& u=g t 2 \tag{1}\\
& \therefore \quad x=0 a_{2}^{2}-1+g_{(s)}+2 \\
& n=a a_{5}=_{2}^{2} \\
& \cdots \\
& B=2 \\
& \frac{Q^{2}}{=-)^{2}} t^{2}=g_{(s)^{2}} t_{2}^{2} \\
& z^{\prime}=\frac{9(s)}{9(-2 i)} t^{2}= \\
& \begin{array}{l}
t=\frac{\sqrt{g_{(5)}}}{g_{(-i-i)}} t_{2} \\
t=\frac{\theta_{1}}{1+2} t_{2}
\end{array} \\
& t=2 \cdot E \equiv 91 E_{2} \\
& \text { se. } 2 \cdot 8591 t_{2}=t_{2}+4 \\
& t_{2}=2 \cdot 15146 \mathrm{sec} \\
& \text { And } D \Rightarrow u=9.51 \times 2.15156 \\
& u_{(s)}=21 \cdot 1 \mathrm{~m} / \mathrm{s}
\end{align*}
$$

2f. A bat is thown vestirally up uite o valotiey oz $30 \mathrm{~m} / \mathrm{s}$.

(iv)

$$
\begin{aligned}
& u=a / s, a+3 \cdot v=s \cdot / \mathrm{s} \\
& v=v=9 t \\
& 5=30-9 \cdot 81 t \\
& t-2=545 \leq 0-
\end{aligned}
$$

iii) Time requirod to roach mavimum beight is t'. Thes. Total kime required to roturen is torginal positu is gn ky, $\quad t_{T}=2 t$

$$
\begin{aligned}
& u=30 \mathrm{r} / \mathrm{s}, v=0, a=-9 \\
& v=u-g t \\
& 0=30-g(t) \\
& t=3-0581 \mathrm{sec} \\
& \text { Tetal time }=6.1162 \mathrm{sec}
\end{aligned}
$$

Kinematics of Candida (cumpilanose Motions)

Curvilinate Motion
If tho pace lruvorsod by a pariida is a cere then the motion is called Cienvilinowe motion th is Towing both x and y diouion displacomones.

- 9 Cipctito motion ie has combined affect of as vertical and a horizontal motion.

Projectile motion:

1. Velocity of projection (u) :-

The velocity with a particle of projected is called as velocity of projection.
2. Angle of projection (θ):-

The angle between the direction of projection and the horizontal direction is called as angle of Proper 3. Trajectory:

The path traced by the projectile is called as its trajectory.

The x \& y carporiant of voloriby

$$
\begin{aligned}
& v_{x}=8 \cos 63.43=3.75 \mathrm{~m} / \mathrm{s} \\
& v_{y}=8 \sin 63.43=7-15 \pi 4 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Padius q curnatere

$$
\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3 / 2}
$$

$$
=\frac{\left(1+2^{2}\right)^{3 / 2}}{2 / 3}
$$

$$
=16.7705 \mathrm{~m}
$$

$$
\begin{aligned}
& a_{n}=\frac{v^{2}}{a}=\frac{64}{16.7995}=3.8162 \mathrm{~m} / \mathrm{s}^{2} \\
& a_{t}=0 \quad(\text { const-speod) } \\
& a=3.862 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

3. The motion i a porsicle is described by $x=t^{2}+8 t+4$ and $y=t^{3}+3 t^{2}+8 t+4$. Find a) Initiol valocity \Rightarrow the pootide b) Veloing of the porticle at $t=2 \mathrm{sec}$. c) accelerotion at $t=2 \mathrm{se}$ sch:-

$$
\begin{array}{ll}
x=t^{2}+8 t+4 & y=t^{3}+3 t^{2}+8 t+4 \\
v_{x}=\frac{d x}{d t}=2 t+8 & v_{y}=\frac{d y}{d t}=3 t^{2}+6 t+8 \\
a_{x}=\frac{d^{2} x}{d t^{2}}=2 & a_{y}=\frac{d^{2} y}{d t^{2}}=6 t+6
\end{array}
$$

a) Inicial velocity

Jainially $t=0, v_{x}=8 \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
& V_{y}=8 \mathrm{~m} / \mathrm{s} \\
& V=\sqrt{8}+8^{2}
\end{aligned}
$$

$$
\begin{aligned}
& 18+8^{2} \\
& 11-3131 \mathrm{~m} / \mathrm{s}
\end{aligned} \text { at } 0,45^{\circ}
$$

b) Volricig at $t=2$ soc

$$
\begin{aligned}
& V_{x}=12 \mathrm{~m} / \mathrm{s} \\
& V_{y}=32 \mathrm{~m} / \mathrm{s} \\
& V=\sqrt{1^{2}+32^{2}} \\
& =34.176 \mathrm{~m} / \mathrm{s} \text { at } \theta_{2}=69.443^{\circ}
\end{aligned}
$$

C) Accoloration ou $t=2 \mathrm{sec}$

$$
\begin{aligned}
& a_{x}=2 \mathrm{~m} / \mathrm{s} \\
& a_{y}=18 \mathrm{~m} / \mathrm{s} \\
& a=\sqrt{2^{2}+18^{2}} \\
& =18.11 \mathrm{~m} / \mathrm{s} \quad \text { ar } \quad \theta_{3}=83.6598^{\circ}
\end{aligned}
$$

5. A biret is sutiong or tho top is o twe am bigh.

 volsenty o 2 esuls, on $a \%$ to his tho bird a\% Soun as posithop

$$
\begin{aligned}
& 30=25 \cos 0 x t-\theta \quad q=25 \sin 0(t) \%-\frac{1}{2}(g) t^{2} \\
& \text { … () } \\
& D \Rightarrow t=\frac{30}{25 \cos \theta}
\end{aligned}
$$

Sibs t'valuee is (2)

$$
\begin{aligned}
& q=\left(2 \sin \theta \times \frac{30}{25 \cos \theta}\right) \overline{8}\left(+\frac{1}{2}(9-81) \% \frac{30^{2}}{25^{2} \cos ^{2} \theta}\right) \\
& q=30 \tan \theta-7.0632 \sec ^{2} \theta \quad\left[\sec ^{2} \theta-\frac{1}{\cos \theta}\right] \\
& = \\
& 9=30 \tan \theta-7.0632\left(1+\tan ^{2} \theta\right) \\
& 9=30 \tan \theta-7.0632-7.0632 \tan ^{2} \theta \\
& 9.062 \tan ^{2} \theta-30 \tan \theta+16.0632=0 \\
& \quad \tan \theta=3.61894,0.6284 \\
& \theta=74-553^{\circ}, 32.1468^{\circ}
\end{aligned}
$$

Tine of flight is on by.

$$
t=\frac{30}{25 \cos \theta}
$$

$$
[\cdot \operatorname{epn}(1)]
$$

if $\theta=74.553, \quad t=4.5054 \mathrm{sec}$

$$
\theta=32.14 .65^{\circ}, \quad t=1.4173 \mathrm{sec}
$$

$\theta=32.1468^{\circ}$ because it takes less time
as compared with that of the other angle of projection
16. A particle is projected in air with a velocity $100 \mathrm{~m} / \mathrm{s}$ and at an angle of 30° with the horizontal, five
(i) the horizontal range ii) the max hight reacheol by the particle iii) the tirie of flight.
x-direction

$$
\begin{aligned}
& u_{x}=100 \cos 30=86.6 \mathrm{~m} / \mathrm{s} \\
& a_{x}=0=g_{x}=0 \\
& S_{x}=R=u_{x}+\frac{1}{2} \hat{g}_{x} t^{2} \\
& s_{x}=R=u_{x t} \\
& y \text { direction: } \\
& u_{y}=100 \sin 30=50 \mathrm{~m} / \mathrm{s} \\
& a_{y}=-9.81 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

A point B, vertical disptacenent $S_{y}=0$

$$
\begin{aligned}
s_{y} & =u_{y} t+\frac{1}{2} a_{y} t^{2} \\
0 & =50 \times t-\frac{1}{2}(9.81) t^{2} \Rightarrow t=10.193 \mathrm{sec} . \\
0 \Rightarrow s_{x} & =R=u_{x} \times t \Rightarrow R
\end{aligned}
$$

At max. height H, Vertical velocity is zero. $h_{\text {max }}=127.4$

$$
h_{\text {max }}=\frac{y^{2} \sin ^{2} \theta \theta}{2} \quad v_{y}^{2}=u_{y}^{2}+2 a_{y} h_{\max } \Rightarrow 0=50^{2}-\left(2 \times 9 \cdot \frac{1}{1}\right) \times h_{\max }
$$

Kinematics or Rerticle-Relative Motion
Relative Velocity.
The motion of a body with respect to another moving body is known as relative motion.

The relative position of B with respect to A and denoted by,

$$
\begin{aligned}
& S_{B / A}=S_{B}-S_{A} \\
& S_{B}=S_{A}+S_{B / A}
\end{aligned}
$$

The relative veloirty of B with respect to A and is denoted by

$$
\begin{aligned}
& v_{B / A}=v_{B}-v_{A} \\
& v_{B}=v_{A}+v_{B / A}
\end{aligned}
$$

The relative acceleration of B wi- to A and is defined as.

$$
\begin{aligned}
& a_{B / A}=a_{B}-a_{A} \\
& a_{B}=a_{A}+a_{B / A}
\end{aligned}
$$

1. Two ships moves from a point at the same time. Ship A has a velocity of 30 kmph and is moving in NW 30° while ship B is moving in south-west direction with a velocity of 40 kmph . Determine the relative velocity of A with r. to B and distance between them after half on hour.

$$
\begin{aligned}
& V_{A}=30 \mathrm{kmph} \\
& V_{B}=40 \mathrm{kmph} \\
& \begin{array}{ll}
V_{A x}=-30 \cos \sin 30=-25.98 & V_{B x}=-40 \cos 45=-28.28 \\
v_{A y}=+30 \sin 30=15 & V_{B y}=-40 \sin 45=-28.28
\end{array} \\
& v_{(A / B) x}=v_{A x}-v_{B x}=-54.26 \mathrm{kmph} \\
& v_{(A / B) y}=v_{A y}-v_{B y}=-13.28 \mathrm{kmph} . \\
& V_{A / 13}=\sqrt{54.26^{2}+13.28^{2}}=55.86 \mathrm{kmph} \\
& \tan \theta=\frac{13.28}{54.26} \\
& \theta=13.75^{\circ} \\
& \left.\begin{array}{l}
\text { Relative distance } \\
\text { after hoff an hour }
\end{array}\right\}=V_{A / B} \times \text { time } \\
& =55.86 \times \frac{1}{2} \\
& =27.933 \mathrm{~km}
\end{aligned}
$$

3. Plane A is flying along a straight line path, where as plane B is flying a long circular path having a radius of curvature of e_{B} is Letormince the velocity and acceleration of B as measured by the pilot of A.

Son:-

* Assume the upward and the right side quantity as the.
* The plane A translates where as plane B has curvilinear motion.

1. Velocity:

$$
\begin{aligned}
V_{B / A} & =V_{B}-V_{A} \\
& =600-700=-100 \mathrm{kmph}=100 \mathrm{kmph}(\downarrow)
\end{aligned}
$$

2. Acceleration :-

$$
\begin{aligned}
& \text { Acceleration:- } a_{A y}=50 \mathrm{kma} / \mathrm{h}^{2} \\
& a_{A x}=0 ; \hat{l}^{2} \\
& a_{B x}=\frac{v_{B}^{2}}{e}=\frac{600^{2}}{400}=900 \mathrm{~km} / \mathrm{h}^{2} ; a_{B y}=-100 \mathrm{~km} / \mathrm{h}^{2} . \\
& a_{(B / A) x}=a_{B x}-a_{A x}=900 \mathrm{~km} / \mathrm{h}^{2} ; a_{(B / A) y}=a_{B y}-a_{y}=-100-50=-50 \\
& a_{(B \mid A)}=912.41 \mathrm{~km} / \mathrm{h}^{2} ; \theta=\tan ^{+}\left(\frac{150}{900}\right)=9.46^{\circ} .
\end{aligned}
$$

Impact of Elastic Bodies
Collision between two bevies to be as impace, it the bodies are in Contact tor a Short intanvel I a kine and exert very large force or a Shat period of time. On impact, the bodies deform first and keen recover due to elastic properties and start moving with difforant velocities. collision Surface

Detritions:
Line of Impart
The line drawn perpendicular to colliding surface is called "line of impart'.

Direct impact.
If the direction of velocity of beth colliding bodies are directed along the line of impact, then Ster collision is called the direct impact.
Clique impact:
If direction of motion of one or both the bodied are int directed along the line of impact, then the calision is called Clique impact.

Cenenal 2mpace:
If the mass centre of colliding buddies one. on the line if impact then the impace is called central impact.

Eccentric Impact:
Even if the mass centre of one b the colliding bodies are not on the line of infarct, then the impact is called Eccentric impact.
Eg. Cricket bat \& ball.
C_{1} and C_{2} be the conose of ball and bat. They are not located on line of impact.

Period of Collision:
During the Collision, the bodies unstergo a deformation for a small time Interval and than natovar the deformation in a further small interval. Time elapse between initial contact ard maximum deformation is called period of deformation.

And the time elapse betwoen maximum deformation and the instant of seperation is called time of restitution or period of veconery.
Perfectly elastic Impact $[e=1]$
If both of bodies their original Shape and size after the collision. Both momentum and energy conserved.
Inelastic impact $[e>1]$
If both of bodies dons return to their original shape and size completely, after the collision, Orly the momentum remains conserved but there is a loss of energy.
Principle of Collision:

Before Impact

maximum Deformation

After Impact

Consider 2 bodies approach och other with the velocity $v_{1} \& v_{2}$ and masses m_{1} and m_{2} as shown in f Let I be the force exerted due to Collision at a small time. Apply conservation of momentum principle for both bodies.

$$
m_{1} v_{1}+m_{2} v_{2}=m_{1} v_{1}^{\prime}+m_{2} v_{2}^{l}
$$

The coefficient of restitution is the ratio of the magnitude of impulse during the restitution period and deformation period.

Also it is the ratio of relative velocity q seper to Velocity of approach.

$$
\text { Co-aficient of restitution, } \begin{aligned}
e & =\frac{\text { Relative velocity of separs }}{\text { of approx }} \\
& =\frac{v_{2}^{\prime}-V_{1}^{\prime}}{v_{1}-v_{2}}
\end{aligned}
$$

This is called Newton's Law of Collision or restitut The collision problem can be solved by applying, 1. Conservation of momentum and 2. Newton's law \% col
lipporuand Caves

1. When Di, mitomon
 and canamanation of enargy porinciplos

$$
\begin{aligned}
& m_{1} v_{1}+m_{0} v_{2} \quad m_{1} v_{1}^{\prime}+m_{2} v_{2}^{\prime} \\
& m v_{1}+m v_{2} \\
& m_{1}+v_{1}^{\prime}+m v_{i}^{\prime} \quad\left[m_{1}=m_{2}=m\right] \\
& v_{1}+v_{2} \\
& v_{1}^{\prime}+v_{2}^{\prime}
\end{aligned}
$$

$$
v_{g}^{\prime}-v_{1}^{\prime}
$$

$$
V_{1} V_{2}=V_{2}^{\prime} \quad V_{1}^{\prime}
$$

$2(1)+(2) \rightarrow 2 v_{1}=2 v_{2} 1$

$$
\text { (1) -(2) } \Rightarrow \quad \begin{aligned}
& v_{2}^{\prime}=v_{1} \\
& v_{1}^{\prime}=v_{2}
\end{aligned}
$$

(After an olcostric impact of two equal masses exchange their volocitios)
2. Pergactly plastic bodies, $Q=0$

$$
\begin{aligned}
& e=0=\frac{v_{2}^{\prime}-v_{1}^{\prime}}{v_{1}-v_{2}} \\
& v_{2}^{\prime}-v_{1}^{\prime}=0 \\
& v_{2}^{\prime}=v_{1}^{\prime}
\end{aligned}
$$

Apter impact, the final velocity $\%$ both the bodies are equal, it means they move together as a single body. Collision is said to be perfectly inelastic, both the particle stick together after collision and move with the same velocity.
3. $m_{2} \gg m_{1}$ and $v_{2}=0$ and v_{1} is director perpenolicular lu immovable Surface. One is immovable and vary Large mass as compared to the

$$
v_{2}^{\prime}=0 ; \quad v_{1}^{\prime}=-v_{1}
$$

can bounces back with the same velocity.
A. If a ball dropped from a height H to a grour having coefficient of restitution c, then the height \% nebounce ' h ' is given by $e=\sqrt{\frac{h}{H}}$
After ' n ' bounces, the height of nebounce, $h=e^{2 n} t$
5. When a ball is thrown against a vertical wall at an angle θ with the wall, and it rebound with an angle θ ' with the wall as shown in fig. The coefficient of restitution is gr by,

$$
e=\frac{\tan \theta^{\prime}}{\tan \theta}
$$

A sphere of 1 kg moving at $3 \mathrm{~m} / \mathrm{s}$, Collides wive, another sphere of wight 5 kg moving in the game direction at $0.6 \mathrm{~m} / \mathrm{s}$. If the collision is property clastic, find the velocity afore (i) impact

$$
m_{3}=5 \mathrm{~kg}
$$

$v_{n}=0.6 \mathrm{~m} / \mathrm{c}$

Sole:-
Apply the law of conservation is momentum

$$
\begin{align*}
m_{1} v_{1}+m_{2} v_{2} & =m_{1} v_{1}^{\prime}+m_{2} v_{2}^{\prime} \\
(1 \times 3)+(5 \times 0-6) & =1\left(v_{1}^{\prime}\right)+5\left(v_{2}^{\prime}\right) \\
v_{1}^{\prime}+5 v_{2}^{\prime} & =6 \tag{1}
\end{align*}
$$

If perfectly dastic, $e=1=\frac{v_{2}^{\prime}-v_{1}^{\prime}}{v_{1}-v_{2}}$

$$
\begin{equation*}
v_{2}^{\prime}-v_{1}^{\prime}=2 \cdot 4 \tag{2}
\end{equation*}
$$

(1) +(2) $\Rightarrow 6 v_{2}^{\prime}=8.4$

$$
\begin{aligned}
& v_{2}^{\prime}=1.4 \mathrm{~m} / \mathrm{s} \quad(\longrightarrow) \\
& v_{1}^{\prime}=-1 \mathrm{~m} / \mathrm{s} \\
& v_{1}^{\prime}=1 \mathrm{~m} / \mathrm{s} \quad \longleftrightarrow
\end{aligned}
$$

2. A car weighing 5 kN is moving east with a Velocity of 54 kmph and collide with a second car weighing 12 kN is moving west with a velocity of 72 kmph . If the impact is perfectly plastic, What will be the velocities of the cars.

Given:-

$$
m_{1}=\frac{5}{9.81} \mathrm{~kg} ; \quad m_{2}=\frac{12}{9.81} \mathrm{~kg} ; V_{1}=54 \mathrm{~km} / \mathrm{hr} ; v_{2}=72 \mathrm{~km} /
$$

When the impact is perfectly plastic, $e=0$

$$
\begin{equation*}
v_{1}^{\prime}=v_{2}^{\prime}=v_{c} \tag{1}
\end{equation*}
$$

Apply law of conservation of momentum.

$$
\begin{aligned}
& m_{1} v_{1}+m_{2} v_{2}=m_{1} v_{1}^{\prime}+m_{2} v_{2}^{\prime} \\
& \frac{5}{9} \times 54+\frac{12}{9}(-72)=\frac{-5}{9} v_{1}^{\prime}+\frac{12}{9} v_{2}^{\prime}
\end{aligned}
$$

$$
=\left(\frac{5}{9}+\frac{12}{9}\right) \nu_{c}[\therefore \text { eqn (1) }]
$$

$V_{c}=-34.94 \mathrm{~km} / \mathrm{hr}$. Eavards west with common velocity.

Direct coneral impace occurs between 300 N body moving to right with a velocity of $6 \mathrm{~m} / \mathrm{s}$ and 150 N body moving to left with a velocity of $10 \mathrm{~m} / \mathrm{s}$. Find the velocity of each body after impact of the coefficient of restitution is 0.8 .

Apply law of conservation of momentum,

$$
\begin{align*}
& m_{1} v_{1}+m_{2} v_{2}=m_{1} v_{1}^{\prime}+m_{2} v_{2}^{\prime} \\
& \frac{300}{9} \times 6+\frac{150}{9}(-10)=\frac{300}{9} v_{1}^{\prime}+\frac{150}{9} v_{2}^{\prime} \\
& 1800-1500=300 v_{1}^{\prime}+150 v_{2}^{\prime} \\
& 2=2 v_{1}^{\prime}+v_{2}^{\prime}-0 \\
& e=\frac{v_{2}^{\prime}-v_{1}^{\prime}}{v_{1}^{\prime}-v_{2}} \\
& 0.8=\frac{v_{2}^{\prime}-v_{1}^{\prime}}{6-(-10)} \\
& v_{2}^{\prime}-v_{1}^{\prime}=12.8 \tag{2}
\end{align*}
$$

Solving (1) (2)

$$
\begin{aligned}
v_{2}^{\prime} & =9.2 \mathrm{~m} / \mathrm{s} \quad \longleftrightarrow) \\
v_{1}^{\prime} & =-3.6 \mathrm{~m} / \mathrm{s} \\
& =3.6 \mathrm{~m} / \mathrm{s} \quad \longleftrightarrow
\end{aligned}
$$

4. A ball is thrown against a wall with a velocity $6 \mathrm{~m} / \mathrm{s}$ forming an angle is 30° horizontal. Assuming frictionless conditions and coefficient of Destitution is 0.5 , determine the magnitude and direction is the ball as it rebounds from the wall.
sole:-

$$
\begin{aligned}
& v_{1 x}=6 \cos 30=5.196 \mathrm{~m} / \mathrm{s} \longleftrightarrow \\
& v_{1}=6 \sin 30=3 \mathrm{~m} / \mathrm{s}(\uparrow) \\
& v_{2}=0
\end{aligned}
$$

collision is is the x direction; y direction velocity is conserved. So, $v_{1} y^{\prime}=v_{y} y=3 \mathrm{~m} / \mathrm{s}(\uparrow)$

$$
\begin{aligned}
e & =\frac{v_{2 x}^{\prime}-v_{1 x}^{\prime}}{v_{1 x}-v_{2 x}} \\
e & =\frac{v_{1}}{v_{1}^{\prime}} \quad\left[\because v_{2}=0\right] \\
v_{1}^{\prime} & =-0.5 \times 5.196 \\
& =-2.598 \mathrm{~m} / \mathrm{s}=2.598(\longleftrightarrow) \\
v_{1}^{\prime} & =\sqrt{\left(v_{1}^{\prime}\right)^{2}+\left(v_{19}^{\prime \prime}\right)^{2}}=\sqrt{2.598^{2}+3^{2}} \\
v_{1}^{\prime} & =3.9686 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

from fig (2), $\tan \theta^{\prime}=\frac{v_{1} x^{\prime}}{V_{1} y^{\prime}} \Rightarrow \theta^{\prime}=\tan ^{-1}\left(\frac{2.598}{3}\right)$

$$
\theta^{\prime}=40.89^{\circ}
$$

Kinetics of Particle. - Translation
Uautons second law if motion:-
The resultant force acting in the direction if motion is equal to the product of mass and the acceleration in the direction of resultant force.

$$
\Sigma F=m a
$$

D'Alembert's Principle:
A system of forces acting on a body in motion is in "Dynamic Equilibrium' isth the inertia force of the body

$$
\begin{aligned}
& \sum F=m a \\
& \Sigma F-m a=0
\end{aligned}
$$

-ma' is called inertia force.
Where \rightarrow SF-be the Sum of forces in teverce direction is motion ' N ' m-be the mass b the systeminkg 1 a berger accolawion of tho system in the dincecion of ration $\mathrm{m} / \mathrm{s}^{2}$ 1. Two blocks weighing 300 N and 450 N are connected by a rope as shown in fig. "With what acceleration, the block comes down, and what is the tension of the rope. Pulley is friction toss and waighters

$$
10 \leq F_{y}=0 \Rightarrow T-450-450 a=0
$$

Apply Newtons II law fir blocks: (1) $\Sigma F_{y}=0 \Rightarrow T-300+\frac{30}{} g_{a}=0$

$$
\begin{gather*}
\sum F=m a \tag{D}\\
450-T=\frac{450}{9} a \tag{1}\\
T-300=\frac{300}{9} a \tag{2}\\
(1)+(2) \Rightarrow 150=\frac{750}{9} a \tag{2}\\
a=1.962 \mathrm{~m} / \mathrm{s}^{2}
\end{gather*}
$$

Subs in (1) $\Rightarrow T=360 \mathrm{~N}$

$\underset{\text { motion }}{\downarrow}{\underset{.450}{450} N}_{\dagger^{\top}}{ }^{\top} \mathrm{ma}$

2 Two weights 800 N and 400 N are connected by a thread and than a move along a rough horizontal plane under the action of fore e P of 400 N applied to soon N block, as shown in fig. Find a) the acceleration of the weights and tension in the thea Take μ os

$$
\begin{gathered}
K N=200 \mathrm{~N} \\
\sum F_{4}=0 \Rightarrow N=200 \mathrm{~N}
\end{gathered}
$$

Apply Newtons 11 law of motion
i) for 200 N block... $T-60+2,0-2,00=\frac{200}{9} a$.
ii) for 800 N blocle

$$
400-T-240+860-800=\frac{800}{9} a
$$

Solving (1) \&(2), (1) +(2) $\Rightarrow 100=\frac{1000}{9} a$

$$
a=0.981 \mathrm{~m} / \mathrm{s}^{2}
$$

Souls is eqn (D)

$$
T=60+\frac{200 \times 0.981}{9.81}
$$

?. Then blocks mass 10 kg and 5 kg ano commececot as Shown is fiy dstumbe it 0.25 . Tixd tha ariotaration whe the tosion in the string if pulley is wregheloss and friccionters.

Apply newilmons (1 Caus
i) to sky bleck.

$$
\begin{align*}
& 2 f=m a \\
& 49.05 N:(-7)=\frac{49.95}{9.81} a \\
& 49.05-7=5 a \tag{1}
\end{align*}
$$

$$
49.05 \mathrm{~N}
$$

b) 10 kg block
(i)

$$
\begin{align*}
& \text { Ef=ma } \\
& T-f=10 a \\
& T-\mu R_{N}=10 a \\
& T-(0.25 \times 109 \times 9.81=10 a \\
& T-24.535=10 a \tag{12}
\end{align*}
$$

$$
\begin{aligned}
& (10 \times 981) N \\
& R_{N 0} \in f=\mu R_{N} \\
& E F_{Y}=0 \Rightarrow R_{N}=98.1 \\
& f=0.25 \times 98.1 \\
& f=24.535 \\
& \sum F(J) f \\
& m a=10 a
\end{aligned}
$$

(0) +2

$$
\begin{gathered}
49.05-24.535=15 a \\
a=1.635 \mathrm{~m} / \mathrm{s}^{2}
\end{gathered}
$$

Sulas in (1) $\Rightarrow T=24.535+(10 \times 1.635)$

$$
T=40.875 \mathrm{~N}
$$

If. It ha fry Shown two masses A \& B are connected by a rope and pulley. The masses are released from rose. Assuming pulley are frictionless -and weightless, determine, (i) torsion of the rope ii) Acceleration of mass A \& B. Assume the magnitude of accelerations, as a-accoteration of 150 kg downward, La . 50 kg upward I is tic rope of 50 kg $2 T$ be the tension of the rope of 150 kg .
Apply Nouton II Saw of motion

150 kg
(50 9.9 .81) $(150 \times 9.81) \mathrm{N}$
(1) +3$)$

$$
\begin{align*}
509 & =350 a \tag{1}\\
a & =\frac{50 \times 9.81}{350} \\
a & =1.4014 \mathrm{~m} / \mathrm{s}^{2}
\end{align*}
$$

$$
a_{A}=1.4014 \mathrm{~m} / \mathrm{m}
$$

Subs as value is on n (1), $2 T=1509-150(a)$

$$
T=630 \cdot 64 \mathrm{~N}
$$

$$
a_{B}=2(a) \quad \therefore a_{B}=2.8028 \mathrm{~m} / \mathrm{s}^{2}
$$

Work Energy Principle.
a) Workdone by a force

Consider a force ' F ' is acting on a body with an
 angle θ with the direction q motion. The displacement of the body is denoted by ids, then the work done by force is given by

$$
d W=\int_{0}^{s}[F \cos \theta] d s
$$

$=\sum[$ Force in the direction of motion $] \times$ displacement
b) Workdone by a force of Gravity:

A body of mass ' m ' is displaced at a height of 'h' from initial position.

$$
w=\int_{z_{1}}^{z_{2}}-m g d z
$$

$=-m g h$, if the displacement is upward $=m g h, \quad \dot{y}$ downward.
C) Workdone by a spring force J

Work Energy Principle．．．
from Noutoris II Law，$F=$ ma

$$
\Gamma \times s=\frac{1}{2} m\left[v^{2}-u^{2}\right]
$$

Workdone＝Change in Kinetic Energy
This equation is called Work－energy principle．
1．A food packet having a mass of lo kg is dropped with an initial velocity of $5 \mathrm{~m} / \mathrm{s}$ from a very high altitude，if the frictional force is 80 N ． Determine the velocity of food packet Mas fallen 10 m ．

Apply with energy principle，番 $F \times S=\frac{1}{2} m\left[v^{2}-u^{2}\right]$

$$
\begin{aligned}
(98.1-80) \times 10 & =\frac{1}{2} \times 10\left[v^{2}-5^{2}\right] \\
v & =7.823 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

2 A truck of mass 15 tonnes travel at $1.6 \mathrm{~m} / \mathrm{s}$ tracts with a spring buffer, spring compresses $1.25 \mathrm{~mm} / \mathrm{kN}$. Find the maximum compression $\%$ spry

$$
\begin{aligned}
\text { Stffrass } & =\frac{1}{1.25} \mathrm{kN} / \mathrm{mm} \\
& =\frac{1000}{1.25 \times 10^{-3}} \mathrm{~N} / \mathrm{m} \\
& =0.8 \times 10^{6} \mathrm{~N} / \mathrm{m}
\end{aligned}
$$

Kinetic Energy of the truck = Work done by the Sprit

$$
\begin{aligned}
\frac{1}{2} m v^{2} & =\frac{1}{2} k \delta^{2} \\
\delta^{2} & =\frac{m v^{2}}{k} \\
& =\frac{15 \times 10^{3} \times(1.6)^{2}}{0.8 \times 10^{6}} \\
\delta^{2} & =190.048 \\
\delta & =0.219 \mathrm{~m} \\
\delta & =219 \mathrm{~mm}
\end{aligned}
$$

Impulse Momentum Principle
Newtons II law States that,

$$
\begin{align*}
& \text { SToma } \\
& \text { SF }=m \frac{d N}{d e} \\
& \text { SF de }=m d N \tag{1}
\end{align*}
$$

impulse is defied as the large amount of force acting at a shore interval of time..

$$
\text { Impulse } I=\int_{0}^{t} \sum F d t
$$

For equaizin (1) Applying the livaits for time O to t and u to v for velocity.

$$
\begin{aligned}
\int_{0}^{t} \sum F d t & =m \int_{u}^{v} d v \\
& =m[v-u]
\end{aligned}
$$

Impulse $\sum F \times t=m v-m u=$ Change of momentum.
\therefore Net force in the direction of motion \times time $=$ change of momentum

Note:- When ret force acting on the body is zero; Initial momentum $=$ final momentum.

This is called Law of conservation of momentum.

1. A 2500 kg car is driven dawn a 9° inclined plane at a speed of 100 kmph . When lerakes are applied causing a constant total braking force is 7 kN , determine the time required to stop the car.
Given:-

$$
\begin{aligned}
& u=\frac{100}{3.6}=27.78 \mathrm{~m} / \mathrm{s} \\
& v=0 \\
& f=7000 \mathrm{~N}
\end{aligned}
$$

Soln:-
Apply Impulse-Momentuon principle:

$$
\begin{aligned}
\sum F \times t & =m[v-u] \\
-7000 \times t & =2500[0.27 .78] \\
t & =9.9214 \mathrm{sec} .
\end{aligned}
$$

2. A 10 gm bullet has a velocity of $2 \mathrm{~km} / \mathrm{s}$ as it enters a fixed block \% word. It comes to rest in 0.002 seconds after entering the block. Determ resistance average, force that acted on the bullet and the distance penetrated by it.
Given:-

$$
\begin{aligned}
& u=2000 \mathrm{~m} / \mathrm{s} ; v=0 \\
& m=109 \mathrm{~m} \\
& m=10 \times 10^{-3} \mathrm{~kg} \\
& t=0.002 \mathrm{sec}
\end{aligned}
$$

Let F^{\prime} ' be the avg, resistance force

